BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7030366)

  • 1. Insulin degradation in human erythrocyte. Effects of reduced glutathione on insulin degradation by membrane fractions.
    Bellomo G; Nicotera PL; Fratino P
    Boll Soc Ital Biol Sper; 1981 Aug; 57(16):1666-72. PubMed ID: 7030366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin degradation in human erythrocyte. Effects of reduced glutathione on insulin degradation by hemolysate.
    Bellomo G; Nicotera PL; Fratino P
    Boll Soc Ital Biol Sper; 1981 Aug; 57(16):1660-5. PubMed ID: 7030365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin degradation in human erythrocytes. Effect of triton X-100 treatment on insulin-degrading activity of membranes.
    Bellomo G; Nicotera PL; Parini A; Fratino P
    J Endocrinol Invest; 1983 Dec; 6(6):441-4. PubMed ID: 6368662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 125I-insulin degradation by normal rabbit erythrocyte membranes solubilized in different detergents.
    Bansal DD; Jhamb A
    Indian J Exp Biol; 1987 Dec; 25(12):869-70. PubMed ID: 3331161
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the human insulin receptor solubilized from cultured fibroblast and erythrocyte cell membrane preparations.
    Hara H; Hidaka H; Kosmakos FC; Mott DM; Vasquez B; Howard BV; Bennett PH
    J Clin Endocrinol Metab; 1981 Jan; 52(1):17-22. PubMed ID: 7005256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin degradation in human erythrocyte: effects of cations.
    Bellomo G; Nicotera PL; Travaglino F; Palma Martino A; Mirabelli F; Fratino P
    Acta Diabetol Lat; 1985; 22(1):63-9. PubMed ID: 3890452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats.
    Murugan P; Pari L
    J Ethnopharmacol; 2007 Sep; 113(3):479-86. PubMed ID: 17693046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of diamide and glutathione on the uptake of glucose by human erythrocytes.
    Leoncini G; Maresca M
    Ital J Biochem; 1983; 32(2):102-10. PubMed ID: 6629727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of covalent binding by insulin to erythrocyte and reticulocyte insulin receptors.
    Ward GM; Clark S; Harrison LC
    Biochem Biophys Res Commun; 1984 Sep; 123(2):849-53. PubMed ID: 6385971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective effect of the membrane skeleton on the immunologic reactivity of the human red cell Rho(D) antigen.
    Paradis G; Bazin R; Lemieux R
    J Immunol; 1986 Jul; 137(1):240-4. PubMed ID: 3086450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxylamine treatment increases glutathione-protein and protein-protein binding in human erythrocytes.
    Spooren AA; Evelo CT
    Blood Cells Mol Dis; 1997 Dec; 23(3):323-36. PubMed ID: 9398534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primaquine-induced hemolytic anemia: effect of 6-methoxy-8-hydroxylaminoquinoline on rat erythrocyte sulfhydryl status, membrane lipids, cytoskeletal proteins, and morphology.
    Bolchoz LJ; Morrow JD; Jollow DJ; McMillan DC
    J Pharmacol Exp Ther; 2002 Oct; 303(1):141-8. PubMed ID: 12235244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium influx: a possible role for insulin modulation of intracellular distribution and activity of 6-phosphofructo-1-kinase in human erythrocytes.
    Zancan P; Sola-Penna M
    Mol Genet Metab; 2005 Nov; 86(3):392-400. PubMed ID: 16122962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and solubilization of the specific binding sites for d-alpha-tocopherol from human erythrocyte membranes.
    Wimalasena J; Davis M; Kitabchi AE
    Biochem Pharmacol; 1982 Nov; 31(21):3455-61. PubMed ID: 7150365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An immunochemical approach for the analysis of membrane protein alterations in Ca2+-loaded human erythrocytes.
    Bjerrum OJ; Hawkins M; Swanson P; Griffin M; Lorand L
    J Supramol Struct Cell Biochem; 1981; 16(3):289-301. PubMed ID: 7310899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of reduced and oxidized glutathione on physico-chemical properties of erythrocyte membranes].
    Kozlova NM; Slobozhanina EI; Antonovich AN; Luk'ianenko LM; Chernitskiĭ EA
    Biofizika; 2001; 46(3):467-70. PubMed ID: 11449546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Ca2+ transport by vesicles reconstituted from Triton X-100-solubilized pigeon erythrocyte membrane.
    Yeung WK; Weisman G; Vidaver GA
    Biochim Biophys Acta; 1979 Aug; 555(2):249-58. PubMed ID: 476105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat-inactivation of insulin-degrading process on erythrocyte membrane.
    Nakao K; Kagawa S; Shimizu S; Matsuoka A
    Horm Metab Res; 1982 May; 14(5):275. PubMed ID: 7047349
    [No Abstract]   [Full Text] [Related]  

  • 20. The binding of fibrinogen and fibrinogen degradation products to the erythrocyte membrane and its relationship to haemorheology.
    Rampling MW
    Acta Biol Med Ger; 1981; 40(4-5):373-8. PubMed ID: 7315086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.