These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7030392)

  • 41. Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome.
    Levchenko V; Jackson V
    Biochemistry; 2004 Mar; 43(9):2359-72. PubMed ID: 14992573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt.
    Weintraub H; Palter K; Van Lente F
    Cell; 1975 Sep; 6(1):85-110. PubMed ID: 1164735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolism of histones in avian erythroid cells.
    Sung MT; Harford J; Bundman M; Vidalakas G
    Biochemistry; 1977 Jan; 16(2):279-85. PubMed ID: 836788
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both.
    Jackson V
    Biochemistry; 1990 Jan; 29(3):719-31. PubMed ID: 1692479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pea histones H2A and H2B. Variable and conserved regions in the sequences.
    Hayashi H; Iwai K; Johnson JD; Bonner J
    J Biochem; 1977 Aug; 82(2):503-10. PubMed ID: 914793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the binding of C-reactive protein to chromatin subunits.
    Du Clos TW; Marnell L; Zlock LR; Burlingame RW
    J Immunol; 1991 Feb; 146(4):1220-5. PubMed ID: 1991964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamic studies of the core histones: stability of the octamer subunits is not altered by removal of their terminal domains.
    Karantza V; Freire E; Moudrianakis EN
    Biochemistry; 2001 Oct; 40(43):13114-23. PubMed ID: 11669650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Planar model of nucleosome and chromatin structure of high orders].
    Priiatkina TN
    Biokhimiia; 1977 Nov; 42(11):1923-33. PubMed ID: 338036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development.
    Zhou W; Zhu Y; Dong A; Shen WH
    Plant J; 2015 Jul; 83(1):78-95. PubMed ID: 25781491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteolytic digestion studies of chromatin core-histone structure. Identification of the limit peptides of histones H3 and H4.
    Böhm L; Briand G; Sautière P; Crane-Robinson C
    Eur J Biochem; 1981 Sep; 119(1):67-74. PubMed ID: 7341247
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Histone-histone interactions within chromatin. Preliminary characterization of presumptive H2B-H2A and H2B-H4 binding.
    Martinson HG; McCarthy BJ
    Biochemistry; 1976 Sep; 15(18):4126-31. PubMed ID: 963028
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Secondary structure of histones in solution].
    Shestopalov BV
    Mol Biol (Mosk); 1983; 17(5):949-57. PubMed ID: 6314120
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.
    Arnaudo AM; Link AJ; Garcia BA
    ACS Chem Biol; 2016 Mar; 11(3):782-91. PubMed ID: 26789204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro core particle and nucleosome assembly at physiological ionic strength.
    Ruiz-Carrillo A; Jorcano JL; Eder G; Lurz R
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3284-8. PubMed ID: 291002
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the histone core complex.
    Chung SY; Hill WE; Doty P
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1680-4. PubMed ID: 273898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specificity of the histone lysine methyltransferases from rat brain chromatin.
    Duerre JA; Onisk DV
    Biochim Biophys Acta; 1985 Nov; 843(1-2):58-67. PubMed ID: 3933570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of individual histone tyrosines in the formation of the nucleosome complex.
    Zweidler A
    Biochemistry; 1992 Sep; 31(38):9205-11. PubMed ID: 1390707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The RCAF complex mediates chromatin assembly during DNA replication and repair.
    Tyler JK; Adams CR; Chen SR; Kobayashi R; Kamakaka RT; Kadonaga JT
    Nature; 1999 Dec; 402(6761):555-60. PubMed ID: 10591219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.