These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7031663)

  • 1. Microtubules and microfilaments during cell spreading and colony formation in PK 15 epithelial cells.
    Connolly JA; Kalnins VI; Barber BH
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6922-6. PubMed ID: 7031663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro.
    Brinkley BR; Beall PT; Wible LJ; Mace ML; Turner DS; Cailleau RM
    Cancer Res; 1980 Sep; 40(9):3118-29. PubMed ID: 7000337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition of aortic endothelial cells from resting to migrating cells is associated with three sequential patterns of microfilament organization.
    Lee TY; Rosenthal A; Gotlieb AI
    J Vasc Res; 1996; 33(1):13-24. PubMed ID: 8603122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfilament rearrangements during fibroblast-induced contraction of three-dimensional hydrated collagen gels.
    Farsi JM; Aubin JE
    Cell Motil; 1984; 4(1):29-40. PubMed ID: 6539173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A primary role for microfilaments, but not microtubules, in hormone-induced cytoplasmic retraction.
    Aubin JE; Alders E; Heersche JN
    Exp Cell Res; 1983 Feb; 143(2):439-50. PubMed ID: 6299769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation by micromachined grooves of different dimensions.
    Oakley C; Jaeger NA; Brunette DM
    Exp Cell Res; 1997 Aug; 234(2):413-24. PubMed ID: 9260912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia.
    Wang E; Cross RK; Choppin PW
    J Cell Biol; 1979 Nov; 83(2 Pt 1):320-37. PubMed ID: 227913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-microscopical analysis of focal adhesions of retinal pigmented epithelial cells.
    Opas M; Kalnins VI
    Invest Ophthalmol Vis Sci; 1986 Nov; 27(11):1622-33. PubMed ID: 3771144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules regulate aortic endothelial cell actin microfilament reorganization in intact and repairing monolayers.
    Lee JS; Gotlieb AI
    Histol Histopathol; 2005 Apr; 20(2):455-65. PubMed ID: 15736050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of fibronectin in the organisation of the cytoskeleton during the spreading of rat mammary epithelial cells.
    Ferns SA; Kimbell R; Aitken JA; Warburton MJ
    Cell Biol Int Rep; 1992 Mar; 16(3):207-16. PubMed ID: 1533819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The formation of an endoplasmic microfilament layer during fibroblast spreading].
    Svitkina TM
    Tsitologiia; 1988 Jul; 30(7):861-6. PubMed ID: 3188228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism.
    Braun M; Wasteneys GO
    Planta; 1998 May; 205(1):39-50. PubMed ID: 9599803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of actin filaments and microtubules in the spreading of rabbit corneal epithelial cells on the fibronectin matrix.
    Fukuda M; Nishida T; Otori T
    Cornea; 1990 Jan; 9(1):28-35. PubMed ID: 2297991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubulin and actin in paired nonneoplastic and spontaneously transformed neoplastic cell lines in vitro: fluorescent antibody studies.
    Tucker RW; Sanford KK; Frankel R
    Cell; 1978 Apr; 13(4):629-42. PubMed ID: 350415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell shape and organization of cytoskeleton and surface fibronectin in non-tumorigenic and tumorigenic rat liver cultures.
    Bannikov GA; Guelstein VI; Montesano R; Tint IS; Tomatis L; Troyanovsky SM; Vasiliev JM
    J Cell Sci; 1982 Apr; 54():47-67. PubMed ID: 7042722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reorganization of microtubules and microfilaments in differentiating keratinocytes.
    Lewis L; Barrandon Y; Green H; Albrecht-Buehler G
    Differentiation; 1987; 36(3):228-33. PubMed ID: 2452759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reorganization of microfilaments, centrosomes, and microtubules during in vitro small wound reendothelialization.
    Wong MK; Gotlieb AI
    J Cell Biol; 1988 Nov; 107(5):1777-83. PubMed ID: 3182937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubules, microfilaments and adhesion patterns in differentiating chick retinal pigment epithelial (RPE) cells in vitro.
    Turksen K; Opas M; Aubin JE; Kalnins VI
    Exp Cell Res; 1983 Sep; 147(2):379-91. PubMed ID: 6684589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cylindrical substratum induces different patterns of actin microfilament bundles in nontransformed and in ras-transformed epitheliocytes.
    Levina EM; Domnina LV; Rovensky YA; Vasiliev JM
    Exp Cell Res; 1996 Nov; 229(1):159-65. PubMed ID: 8940260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotype modulation in primary cultures of arterial smooth-muscle cells: reorganization of the cytoskeleton and activation of synthetic activities.
    Palmberg L; Sjölund M; Thyberg J
    Differentiation; 1985; 29(3):275-83. PubMed ID: 2416624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.