These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7032506)

  • 1. The organization of formate dehydrogenase in the cytoplasmic membrane of Escherichia coli.
    Graham A; Boxer DH
    Biochem J; 1981 Jun; 195(3):627-37. PubMed ID: 7032506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organization of hydrogenase in the cytoplasmic membrane of Escherichia coli.
    Graham A
    Biochem J; 1981 Aug; 197(2):283-91. PubMed ID: 7034717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The organization of NADH dehydrogenase polypeptides in the inner mitochondrial membrane.
    Smith S; Ragan CI
    Biochem J; 1980 Feb; 185(2):315-26. PubMed ID: 7396818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes.
    Kröger A; Dorrer E; Winkler E
    Biochim Biophys Acta; 1980 Jan; 589(1):118-36. PubMed ID: 7356976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli.
    Cox JC; Edwards ES; DeMoss JA
    J Bacteriol; 1981 Mar; 145(3):1317-24. PubMed ID: 7009577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins of the kidney microvillar membrane. Asymmetric labelling of the membrane by lactoperoxidase-catalysed radioiodination and by photolysis of 3,5-di[125I]iodo-4-azidobenzenesulphonate.
    Booth AG; Kenny AJ
    Biochem J; 1980 Apr; 187(1):31-44. PubMed ID: 6996673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrangement of respiratory nitrate reductase in the cytoplasmic membrane of Escherichia coli. Location of beta subunit.
    Graham A; Boxer DH
    FEBS Lett; 1980 Apr; 113(1):15-20. PubMed ID: 6991285
    [No Abstract]   [Full Text] [Related]  

  • 8. Radioiodination of cell surface lipids and proteins for use in immunological studies.
    Schlager SI
    Methods Enzymol; 1980; 70(A):252-65. PubMed ID: 7421591
    [No Abstract]   [Full Text] [Related]  

  • 9. Escherichia coli formate dehydrogenase mutants with altered selenopolymer profiles.
    Cox JC
    Arch Microbiol; 1989; 152(4):397-400. PubMed ID: 2684082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chemical modification of the lysine residues of bacterial formate dehydrogenase].
    Popov VO; Tishkov VI; Daĭnichenko VV; Egorov AM
    Biokhimiia; 1983 May; 48(5):747-55. PubMed ID: 6409166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli.
    Benoit S; Abaibou H; Mandrand-Berthelot MA
    J Bacteriol; 1998 Dec; 180(24):6625-34. PubMed ID: 9852007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrangement of oligomycin-sensitive adenosine triphosphatase in the mitochondrial inner membrane.
    Ludwig B; Prochaska L; Capaldi RA
    Biochemistry; 1980 Apr; 19(7):1516-23. PubMed ID: 6446319
    [No Abstract]   [Full Text] [Related]  

  • 13. Chemical modification of lysine residues in bacterial formate dehydrogenase.
    Egorov AM; Tishkov VI; Dainichenko VV; Popov VO
    Biochim Biophys Acta; 1982 Dec; 709(1):8-12. PubMed ID: 6817795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane.
    Jones RW; Garland PB
    Biochem J; 1977 Apr; 164(1):199-211. PubMed ID: 328010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy.
    Bagramyan KA; Martirosov SM
    FEBS Lett; 1989 Mar; 246(1-2):149-52. PubMed ID: 2468524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formate dehydrogenase from Escherichia coli.
    Enoch HG; Lester RL
    Methods Enzymol; 1982; 89 Pt D():537-43. PubMed ID: 6755185
    [No Abstract]   [Full Text] [Related]  

  • 17. [Isolation and properties of NAD-dependent formate dehydrogenase from the yeast Candida methylica].
    Egorova OA; Avilova TV; Platonenkova LS; Egorov AM
    Biokhimiia; 1981 Jun; 46(6):1119-26. PubMed ID: 7260197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of the immunodominant regions of the NAD-dependent formate dehydrogenase.
    Bogdanova AV; Cherednikova TV; Egorov TA; Harutyunyan EG; Kurochkina NA; Lamzin VS; Savitskiy AP; Shumilin IA; Popov VO
    FEBS Lett; 1990 Jan; 260(2):297-300. PubMed ID: 1688814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role of amino acid arginine residues of bacterial formate dehydrogenase].
    Tishkov VI; Popov VO; Egorov AM
    Biokhimiia; 1980 Feb; 45(2):317-24. PubMed ID: 7388072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli.
    Iwadate Y; Funabasama N; Kato JI
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 29044403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.