These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7033756)

  • 1. A method for selective tissue and bone visualization using dual energy scanned projection radiography.
    Brody WR; Butt G; Hall A; Macovski A
    Med Phys; 1981; 8(3):353-7. PubMed ID: 7033756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detector for dual-energy digital radiography.
    Barnes GT; Sones RA; Tesic MM; Morgan DR; Sanders JN
    Radiology; 1985 Aug; 156(2):537-40. PubMed ID: 4011921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray imaging technique for in vitro tissue composition measurements using saline/iodine displacement: experimental verification.
    Moreau M; Dunmore-Buyze PJ; Holdsworth DW; Fenster A
    Med Phys; 1997 Mar; 24(3):351-60. PubMed ID: 9089586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-energy imaging of the chest: optimization of image acquisition techniques for the 'bone-only' image.
    Shkumat NA; Siewerdsen JH; Richard S; Paul NS; Yorkston J; Van Metter R
    Med Phys; 2008 Feb; 35(2):629-32. PubMed ID: 18383684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal subtraction of dual-energy chest radiographs.
    Armato SG; Doshi DJ; Engelmann R; Caligiuri P; MacMahon H
    Med Phys; 2006 Jun; 33(6):1911-9. PubMed ID: 16872098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of dual-energy subtraction and electronic bone suppression combined with computer-aided detection on chest radiographs: effect on human observers' performance in nodule detection.
    Szucs-Farkas Z; Schick A; Cullmann JL; Ebner L; Megyeri B; Vock P; Christe A
    AJR Am J Roentgenol; 2013 May; 200(5):1006-13. PubMed ID: 23617482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of scattered radiation and veiling glare in dual-energy tissue-bone imaging: a theoretical analysis.
    Shaw CG; Plewes DB
    Med Phys; 1987; 14(6):956-67. PubMed ID: 3696082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-energy scanned projection radiography of osseous metastatic disease.
    Sartoris DJ; Sommer FG; Oppenheimer DA
    Invest Radiol; 1985 Dec; 20(9):983-8. PubMed ID: 3908389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-energy x-ray projection imaging: two sampling schemes for the correction of scattered radiation.
    Wagner FC; Macovski A; Nishimura DG
    Med Phys; 1988; 15(5):732-48. PubMed ID: 3185410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent-Compton scattering for the assessment of bone mineral content using heavily filtered x-ray beams.
    Webster DJ; Lillicrap SC
    Phys Med Biol; 1985 Jun; 30(6):531-9. PubMed ID: 4011675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-exposure dual-energy computed radiography: improved detection and processing.
    Ergun DL; Mistretta CA; Brown DE; Bystrianyk RT; Sze WK; Kelcz F; Naidich DP
    Radiology; 1990 Jan; 174(1):243-9. PubMed ID: 2294555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.
    Xu T; Ducote JL; Wong JT; Molloi S
    Med Phys; 2006 Jun; 33(6):1612-22. PubMed ID: 16872069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of 60 keV photons by biological material and influence in diagnostic radiology.
    de Magalhães SD; Gonçalves OD; Rizzo P
    Med Phys; 1996 Sep; 23(9):1635-42. PubMed ID: 8892261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a calibration phantom for quantitative radiography.
    Martinez C; de Molina C; Desco M; Abella M
    Med Phys; 2021 Mar; 48(3):1039-1053. PubMed ID: 33283889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral content of bone: measurement by energy subtraction digital chest radiography.
    Friedman SE; Dubovsky EV; Dubovsky J; Alexander CB; Robinson CA; Sabbagh EA; Barnes GT; Fraser RG
    AJR Am J Roentgenol; 1987 Dec; 149(6):1199-202. PubMed ID: 3318343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of chest dual-energy subtraction digital tomosynthesis imaging and dual-energy subtraction radiography to detect simulated pulmonary nodules with and without calcifications a phantom study.
    Gomi T; Nakajima M; Fujiwara H; Umeda T
    Acad Radiol; 2011 Feb; 18(2):191-6. PubMed ID: 21232683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Clinical evaluation of single-exposure dual-energy subtraction chest radiography: with FCR 9501 ES].
    Takashima T
    Nihon Igaku Hoshasen Gakkai Zasshi; 1996 Nov; 56(13):909-16. PubMed ID: 8969053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation coefficients of body tissues using principal-components analysis.
    Weaver JB; Huddleston AL
    Med Phys; 1985; 12(1):40-5. PubMed ID: 3883118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lung nodule detection by microdose CT versus chest radiography (standard and dual-energy subtracted).
    Ebner L; Bütikofer Y; Ott D; Huber A; Landau J; Roos JE; Heverhagen JT; Christe A
    AJR Am J Roentgenol; 2015 Apr; 204(4):727-35. PubMed ID: 25794062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.