These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 7034716)
21. The enzymes of proline biosynthesis in Escherichia coli. Their molecular weights and the problem of enzyme aggregation. Hayzer DJ; Moses V Biochem J; 1978 Jul; 173(1):219-28. PubMed ID: 28732 [TBL] [Abstract][Full Text] [Related]
22. Glutamate recognition and hydride transfer by Escherichia coli glutamyl-tRNA reductase. Lüer C; Schauer S; Virus S; Schubert WD; Heinz DW; Moser J; Jahn D FEBS J; 2007 Sep; 274(17):4609-14. PubMed ID: 17697121 [TBL] [Abstract][Full Text] [Related]
23. An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase. Skinner MA; Cooper RA Arch Microbiol; 1982 Sep; 132(3):270-5. PubMed ID: 6756331 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+). Cherney LT; Cherney MM; Garen CR; Niu C; Moradian F; James MN J Mol Biol; 2007 Apr; 367(5):1357-69. PubMed ID: 17316682 [TBL] [Abstract][Full Text] [Related]
25. Human liver high Km aldehyde dehydrogenase (ALDH4): properties and structural relationship to the glutamic gamma-semialdehyde dehydrogenase. Agarwal DP; Eckey R; Hempel J; Goedde HW Adv Exp Med Biol; 1993; 328():191-7. PubMed ID: 8493898 [No Abstract] [Full Text] [Related]
26. Carboxymethylhydroxymuconic semialdehyde dehydrogenase in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli. Alonso JM; Garrido-Pertierra A Biochim Biophys Acta; 1982 Oct; 719(1):165-7. PubMed ID: 6756482 [TBL] [Abstract][Full Text] [Related]
27. Analysis of the Escherichia coli proBA locus by DNA and protein sequencing. Deutch AH; Rushlow KE; Smith CJ Nucleic Acids Res; 1984 Aug; 12(15):6337-55. PubMed ID: 6089111 [TBL] [Abstract][Full Text] [Related]
28. [The proline biosynthesis gene proA from the thermophilic bacterium Thermus ruber: its cloning, sequencing and heterologous expression]. Iaklichkin SIu; Zimina MS; Iurchenko IuV; Khromov IS; Neumyvakin LV Genetika; 1999 Jan; 35(1):37-45. PubMed ID: 10330610 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of Escherichia coli CTP synthase by glutamate gamma-semialdehyde and the role of the allosteric effector GTP in glutamine hydrolysis. Bearne SL; Hekmat O; Macdonnell JE Biochem J; 2001 May; 356(Pt 1):223-32. PubMed ID: 11336655 [TBL] [Abstract][Full Text] [Related]
30. Chemical and kinetic mechanisms of aspartate-beta-semialdehyde dehydrogenase from Escherichia coli. Karsten WE; Viola RE Biochim Biophys Acta; 1991 Apr; 1077(2):209-19. PubMed ID: 1673060 [TBL] [Abstract][Full Text] [Related]
31. Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Vothknecht UC; Kannangara CG; von Wettstein D Proc Natl Acad Sci U S A; 1996 Aug; 93(17):9287-91. PubMed ID: 8799193 [TBL] [Abstract][Full Text] [Related]
32. Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. Lüer C; Schauer S; Möbius K; Schulze J; Schubert WD; Heinz DW; Jahn D; Moser J J Biol Chem; 2005 May; 280(19):18568-72. PubMed ID: 15757895 [TBL] [Abstract][Full Text] [Related]
33. Sulfinic and sulfonic analogs of gamma-aminobutyric acid and succinate semialdehyde, new substrates for the aminobutyrate aminotransferase and the succinate semialdehyde dehydrogenase of Pseudomonas fluorescens. De Gracia DG; Jollés-Bergeret B Biochim Biophys Acta; 1973 Jul; 315(1):49-60. PubMed ID: 4147571 [No Abstract] [Full Text] [Related]
34. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Ilag LL; Kumar AM; Söll D Plant Cell; 1994 Feb; 6(2):265-75. PubMed ID: 7908550 [TBL] [Abstract][Full Text] [Related]
35. Molecular cloning and sequence analysis of the proBA operon from an extremely thermophilic eubacterium Thermus thermophilus. Kosuge T; Tabata K; Hoshino T FEMS Microbiol Lett; 1994 Oct; 123(1-2):55-61. PubMed ID: 7988899 [TBL] [Abstract][Full Text] [Related]
36. Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. Huang DD; Wang WY J Biol Chem; 1986 Oct; 261(29):13451-5. PubMed ID: 2875998 [TBL] [Abstract][Full Text] [Related]
37. Site-directed mutational analysis of the novel catalytic domains of alpha-aminoadipate reductase (Lys2p) from Candida albicans. Guo S; Bhattacharjee JK Mol Genet Genomics; 2003 May; 269(2):271-9. PubMed ID: 12756539 [TBL] [Abstract][Full Text] [Related]
38. Multi-enzymatic recycling of ATP and NADPH for the synthesis of 5-aminolevulinic acid using a semipermeable reaction system. Aiguo Z; Ruiwen D; Meizhi Z Biosci Biotechnol Biochem; 2019 Dec; 83(12):2213-2219. PubMed ID: 31362590 [TBL] [Abstract][Full Text] [Related]
39. Efficient production of trans-4-Hydroxy-l-proline from glucose by metabolic engineering of recombinant Escherichia coli. Zhang HL; Zhang C; Pei CH; Han MN; Xu ZD; Li CH; Li W Lett Appl Microbiol; 2018 May; 66(5):400-408. PubMed ID: 29432647 [TBL] [Abstract][Full Text] [Related]
40. Crystal structure of gamma-glutamyl phosphate reductase (TM0293) from Thermotoga maritima at 2.0 A resolution. Page R; Nelson MS; von Delft F; Elsliger MA; Canaves JM; Brinen LS; Dai X; Deacon AM; Floyd R; Godzik A; Grittini C; Grzechnik SK; Jaroszewski L; Klock HE; Koesema E; Kovarik JS; Kreusch A; Kuhn P; Lesley SA; McMullan D; McPhillips TM; Miller MD; Morse A; Moy K; Ouyang J; Robb A; Rodrigues K; Schwarzenbacher R; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; Wang X; West B; Wolf G; Hodgson KO; Wooley J; Wilson IA Proteins; 2004 Jan; 54(1):157-61. PubMed ID: 14705032 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]