BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7034819)

  • 1. The nature of cerebral vasospasm.
    Mchedlishvili G
    Blood Vessels; 1981; 18(6):311-20. PubMed ID: 7034819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in Ca2+ sensitivity of cerebrovascular smooth muscle in experimental chronic cerebral vasospasm.
    Tanaka Y; Masuzawa T; Saito M; Yamada T; Fujimoto K
    Neurol Med Chir (Tokyo); 1998 Aug; 38(8):459-63. PubMed ID: 9780642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relevance of in vitro smooth muscle experiments to cerebral vasospasm.
    Wellum GR; Peterson JW; Zervas NT
    Stroke; 1985; 16(4):573-81. PubMed ID: 3895590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelin: an endothelium-derived vasoactive peptide and its possible role in the pathogenesis of cerebral vasospasm.
    Alafaci C; Salpietro FM; Iacopino DG; Edvinsson L; Tomasello F
    Ital J Neurol Sci; 1991 Jun; 12(3 Suppl 11):55-8. PubMed ID: 1757224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonpeptide endothelin antagonist. Cerebrovascular characterization and effects on delayed cerebral vasospasm.
    Willette RN; Zhang H; Mitchell MP; Sauermelch CF; Ohlstein EH; Sulpizio AC
    Stroke; 1994 Dec; 25(12):2450-5; discussion 2456. PubMed ID: 7974589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pathogenesis of cerebral vasospasm: with special references to the response of fresh human cerebral arteries to red blood cell hemolysate and the changes in the responses of cerebral arteries to vasoconstrictor substances after subarachnoid hemorrhage].
    Handa Y
    Nihon Geka Hokan; 1987 Mar; 56(2):124-37. PubMed ID: 3115214
    [No Abstract]   [Full Text] [Related]  

  • 7. [Cerebral vasospasm and the protein kinase C-mediated contractile system].
    Asano T; Matsui T; Takuwa Y
    No Shinkei Geka; 1991 Mar; 19(3):207-19. PubMed ID: 2038411
    [No Abstract]   [Full Text] [Related]  

  • 8. Cerebrovascular sensitivity to vasoconstricting agents induced by subarachnoid hemorrhage and vasospasm in dogs.
    Toda N; Ozaki T; Ohta T
    J Neurosurg; 1977 Mar; 46(3):296-303. PubMed ID: 839255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebrovascular sensory innervation involved in the development of cerebral vasospasm following a subarachnoid hemorrhage.
    Shiokawa Y; Svendgaard NA
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S167-70. PubMed ID: 7530734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cerebral vasospasm following subarachnoid hemorrhage as studied from the mechanism of physiological smooth muscle contraction].
    Sakaki S; Ohta S
    No Shinkei Geka; 1996 Jan; 24(1):19-28. PubMed ID: 8559260
    [No Abstract]   [Full Text] [Related]  

  • 11. The pathophysiology of cerebral vasospasm.
    Weir B
    Br J Neurosurg; 1995; 9(3):375-90. PubMed ID: 7546359
    [No Abstract]   [Full Text] [Related]  

  • 12. Responses of isolated cerebral arteries to vasoactive agents.
    White RP
    Neurosurg Clin N Am; 1990 Apr; 1(2):401-15. PubMed ID: 2136151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between protein kinase C and calmodulin systems in cerebrovascular contraction: investigation of the pathogenesis of vasospasm after subarachnoid hemorrhage.
    Nishizawa S; Peterson JW; Shimoyama I; Uemura K
    Neurosurgery; 1992 Oct; 31(4):711-6. PubMed ID: 1407457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular mechanisms involved in the responses of cerebrovascular smooth-muscle cells to hemoglobin.
    Vollrath BA; Weir BK; Macdonald RL; Cook DA
    J Neurosurg; 1994 Feb; 80(2):261-8. PubMed ID: 8283265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of relaxations, metabolic failure and increased calcium permeability of smooth muscle during chronic cerebral vasospasm.
    Kim P
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S157-62. PubMed ID: 7836674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of platelets in the development of cerebral vasospasm.
    Satoh S; Suzuki Y; Harada T; Ikegaki I; Asano T; Shibuya M; Sugita K; Saito A
    Brain Res Bull; 1991 Nov; 27(5):663-8. PubMed ID: 1756384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral vasospasm after subarachnoid hemorrhage: an update.
    Heros RC; Zervas NT; Varsos V
    Ann Neurol; 1983 Dec; 14(6):599-608. PubMed ID: 6651248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible role of protein kinase C-dependent smooth muscle contraction in the pathogenesis of chronic cerebral vasospasm.
    Matsui T; Takuwa Y; Johshita H; Yamashita K; Asano T
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):143-9. PubMed ID: 1983998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebrovascular selectivity and vasospasmolytic action of the novel calcium antagonist (+/-)-(E)-1-(3-fluoro-6, 11-dihydrodibenz[b,e]oxepin-11-yl)-4-(3-phenyl-2-propenyl)-piperazine dimaleate in isolated cerebral arteries of the rabbit and dog.
    Minato H; Hashizume M; Masuda Y; Fujitani B; Hosoki K
    Arzneimittelforschung; 1997 Apr; 47(4):339-46. PubMed ID: 9150852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lazaroids and deferoxamine attenuate the intracellular effects of oxyhaemoglobin in vascular smooth muscle.
    Vollrath B; Chan P; Findlay M; Cook D
    Cardiovasc Res; 1995 Oct; 30(4):619-26. PubMed ID: 8575010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.