BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7035445)

  • 1. Studies of the kinetic mechanism of hypoxanthine-guanine phosphoribosyltransferase from yeast.
    Ali LZ; Sloan DL
    J Biol Chem; 1982 Feb; 257(3):1149-55. PubMed ID: 7035445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry.
    Xu Y; Eads J; Sacchettini JC; Grubmeyer C
    Biochemistry; 1997 Mar; 36(12):3700-12. PubMed ID: 9132023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orotate phosphoribosyltransferase and hypoxanthine/guanine phosphoribosyltransferase from yeast: kinetic analysis with chromium (III) pyrophosphate.
    Syed DB; Sloan DL
    J Inorg Biochem; 1990 Feb; 38(2):127-38. PubMed ID: 2157811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human brain hypoxanthine guanine phosphoribosyltransferase: structural and functional comparison with erythrocyte hypoxanthine guanine phosphoribosyltransferase.
    Ikeda K; Suzuki H; Nakagawa S
    Int J Biochem; 1986; 18(7):575-81. PubMed ID: 3091416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of hypoxanthine in isolated rat hepatocytes.
    Vincent MF; Van den Berghe G; Hers HG
    Biochem J; 1984 Aug; 222(1):145-55. PubMed ID: 6206848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic kinetic analyses that employ high-performance liquid chromatography. Competition between orotate- and hypoxanthine/guanine-phosphoribosyltransferases for a common substrate.
    Chung SH; Sloan DL
    J Chromatogr; 1986 Dec; 371():71-81. PubMed ID: 3549748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of nicotinate phosphoribosyltransferase from yeast using high pressure liquid chromatography.
    Hanna LS; Hess SL; Sloan DL
    J Biol Chem; 1983 Aug; 258(16):9745-54. PubMed ID: 6224784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of hypoxanthine-guanine phosphoribosyltransferase from Saccharomyces cerevisiae.
    Nussbaum RL; Caskey CT
    Biochemistry; 1981 Aug; 20(16):4584-90. PubMed ID: 6170313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base.
    Xu Y; Grubmeyer C
    Biochemistry; 1998 Mar; 37(12):4114-24. PubMed ID: 9521733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state kinetics of the schistosomal hypoxanthine-guanine phosphoribosyltransferase.
    Yuan L; Craig SP; McKerrow JH; Wang CC
    Biochemistry; 1992 Jan; 31(3):806-10. PubMed ID: 1731938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orotate phosphoribosyltransferase and hypoxanthine/guanine phosphoribosyltransferase from yeast: nuclear magnetic relaxation studies of the structures of enzyme-bound phosphoribosyl 1-pyrophosphate.
    Syed DB; Strauss RS; Sloan DL
    Biochemistry; 1987 Feb; 26(4):1051-8. PubMed ID: 2436658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human hypoxanthine-guanine phosphoribosyltransferase. IMP-GMP exchange stoichiometry and steady state kinetics of the reaction.
    Salerno C; Giacomello A
    J Biol Chem; 1979 Oct; 254(20):10232-6. PubMed ID: 226537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human hypoxanthine-guanine phosphoribosyltransferase. Steady state kinetics of the forward and reverse reactions.
    Giacomello A; Salerno C
    J Biol Chem; 1978 Sep; 253(17):6038-44. PubMed ID: 681338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of hypoxanthine-guanine phosphoribosyltransferase from Schistosoma mansoni. A potential target for chemotherapy.
    Dovey HF; McKerrow JH; Aldritt SM; Wang CC
    J Biol Chem; 1986 Jan; 261(2):944-8. PubMed ID: 3941107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual substrate specificity of a chimeric hypoxanthine-guanine phosphoribosyltransferase containing segments from the Plasmodium falciparum and human enzymes.
    Sujay Subbayya IN; Sukumaran S; Shivashankar K; Balaram H
    Biochem Biophys Res Commun; 2000 Jun; 272(2):596-602. PubMed ID: 10833458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state kinetics of the hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi.
    Wenck MA; Medrano FJ; Eakin AE; Craig SP
    Biochim Biophys Acta; 2004 Jul; 1700(1):11-8. PubMed ID: 15210120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of the hypoxanthine-guanine phosphoribosyltransferase from Saccharomyces cerevisiae.
    Schmidt R; Wiegand H; Reichert U
    Eur J Biochem; 1979 Jan; 93(2):355-61. PubMed ID: 371963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point mutations in the guanine phosphoribosyltransferase from Giardia lamblia modulate pyrophosphate binding and enzyme catalysis.
    Page JP; Munagala NR; Wang CC
    Eur J Biochem; 1999 Feb; 259(3):565-71. PubMed ID: 10092838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state kinetics of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus: the role of threonine-47.
    Munagala NR; Chin MS; Wang CC
    Biochemistry; 1998 Mar; 37(12):4045-51. PubMed ID: 9521725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.