These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 7037328)

  • 21. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study.
    Friberg B; Friberg S; Burman LG
    J Hosp Infect; 1999 May; 42(1):61-8. PubMed ID: 10363212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Source and route of methicillin-resistant Staphylococcus epidermidis transmitted to the surgical wound during cardio-thoracic surgery. Possibility of preventing wound contamination by use of special scrub suits.
    Tammelin A; Hambraeus A; Ståhle E
    J Hosp Infect; 2001 Apr; 47(4):266-76. PubMed ID: 11289769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Comparison of perforated metal ceiling systems (supported airflow ceilings) with laminar airflow ceilings in type A (DIN 1946 T.4) operating rooms under surgical conditions].
    Bischoff WE; Kindermann A; Sander U; Sander J
    Zentralbl Hyg Umweltmed; 1995 Oct; 198(1):84-95. PubMed ID: 9409897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recirculation of air in operating rooms.
    Ulrich JA; Cribbs W; Michaelsen GS
    Med Instrum; 1976; 10(6):282-6. PubMed ID: 1012104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Routes and sources of Staphylococcus aureus transmitted to the surgical wound during cardiothoracic surgery: possibility of preventing wound contamination by use of special scrub suits.
    Tammelin A; Hambraeus A; Ståhle E
    Infect Control Hosp Epidemiol; 2001 Jun; 22(6):338-46. PubMed ID: 11519910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of measures to decrease intra-operative bacterial contamination in orthopaedic implant surgery.
    Knobben BA; van Horn JR; van der Mei HC; Busscher HJ
    J Hosp Infect; 2006 Feb; 62(2):174-80. PubMed ID: 16343691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laminar flow vs conventional ventilation in operating rooms: results of a 3-yr study of airborne bacteria in a large hospital.
    Clark RE
    Surg Forum; 1973; 24():33-5. PubMed ID: 4806017
    [No Abstract]   [Full Text] [Related]  

  • 28. Airborne contamination in orthopedic surgery. Evaluation of laminar air flow system and aspiration suit.
    Franco JA; Baer H; Enneking WF
    Clin Orthop Relat Res; 1977; (122):231-43. PubMed ID: 837613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Laminar air flow ventilation of operating rooms. An evaluation study of microbiologic and hygienic reports of the epidemiology of postoperative wound infections].
    Bruun JN
    Tidsskr Nor Laegeforen; 1979 Mar; 99(9-10):488-90. PubMed ID: 442048
    [No Abstract]   [Full Text] [Related]  

  • 30. Bacterial air contamination of operating theatres and surgical wards of a university teaching hospital.
    Njoku-Obi AN; Ojiegbe GC
    Afr J Med Med Sci; 1993 Jun; 22(2):19-23. PubMed ID: 7839891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of parting surfaces on the transmission of airborne organisms at junctions between areas of different hygienic standards].
    Burchard HU; Ohgke H; Beckert J
    Zentralbl Bakteriol Mikrobiol Hyg B; 1985 Dec; 181(6):513-24. PubMed ID: 4096154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trial of the use of masks in the gynaecological operating theatre.
    Chamberlain GV; Houang E
    Ann R Coll Surg Engl; 1984 Nov; 66(6):432-3. PubMed ID: 6391343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New operating room garb to reduce postoperative infection.
    Respir Care; 1976 Mar; 21(3):260-4. PubMed ID: 10314697
    [No Abstract]   [Full Text] [Related]  

  • 34. [Study of surgical instruments contamination by bacteria from air during the operation].
    Yin SH; Xu SH; Bo YC
    Zhonghua Hu Li Za Zhi; 1996 Dec; 31(12):690-1. PubMed ID: 9304934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system.
    Chow TT; Yang XY
    J Hosp Infect; 2005 Feb; 59(2):138-47. PubMed ID: 15620448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Results of bacteriological studies of surgical wounds in conventional and in laminar flow operating rooms].
    Knapp U; Ullmann U
    Hefte Unfallheilkd; 1978; (132):144-6. PubMed ID: 363654
    [No Abstract]   [Full Text] [Related]  

  • 37. [Quantitative study of the bacterial flora of air in operating theatres (author's transl)].
    Berche P; Ghnassia JC; Avril JL; Fauchere JL; Soussy JC
    Pathol Biol (Paris); 1978 Feb; 26(2):89-93. PubMed ID: 353664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Quantitative study of bacterial flora in operating room air].
    Berche P; Ghnassia JC; Avril JL; Frauchere JL; Soussy JC
    Sem Hop; 1978 Jun; 54(17-20):653-7. PubMed ID: 211615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of laminar air-flow on the results of Austin-Moore hemiarthroplasty.
    Kakwani RG; Yohannan D; Wahab KH
    Injury; 2007 Jul; 38(7):820-3. PubMed ID: 17157847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ventilation performance in operating theatres against airborne infection: review of research activities and practical guidance.
    Chow TT; Yang XY
    J Hosp Infect; 2004 Feb; 56(2):85-92. PubMed ID: 15019218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.