BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7037592)

  • 1. Structural relationship between human high and low molecular mass urokinase.
    Günzler WA; Steffens GJ; Otting F; Buse G; Flohé L
    Hoppe Seylers Z Physiol Chem; 1982 Feb; 363(2):133-41. PubMed ID: 7037592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete amino acid sequence of low molecular mass urokinase from human urine.
    Steffens GJ; Günzler WA; Otting F; Frankus E; Flohé L
    Hoppe Seylers Z Physiol Chem; 1982 Sep; 363(9):1043-58. PubMed ID: 6754572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human low-molecular-weight urinary urokinase. Partial characterization and preliminary sequence data of the two polypeptide chains.
    Schaller J; Nick H; Rickli EE; Gillessen D; Lergier W; Studer RO
    Eur J Biochem; 1982 Jul; 125(2):251-7. PubMed ID: 6749491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary structure of single-chain pro-urokinase.
    Kasai S; Arimura H; Nishida M; Suyama T
    J Biol Chem; 1985 Oct; 260(22):12382-9. PubMed ID: 2931434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain.
    Günzler WA; Steffens GJ; Otting F; Kim SM; Frankus E; Flohé L
    Hoppe Seylers Z Physiol Chem; 1982 Oct; 363(10):1155-65. PubMed ID: 6754569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. International collaborative study on the assay of commerically available high and low molecular weight urokinases.
    Gaffney PJ; Tydeman MS; Kirkwood TB; Aronson D; Murano G
    Thromb Haemost; 1981 Feb; 45(1):34-7. PubMed ID: 7018003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent molecular weight approximately 92 000 hybrid plasminogen activator derived from human plasmin amino-terminal and urokinase carboxyl-terminal domains.
    Robbins KC; Tanaka Y
    Biochemistry; 1986 Jun; 25(12):3603-11. PubMed ID: 2941075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit structure of deglycosylated human and swine trachea and Cowper's gland mucin glycoproteins.
    Sangadala S; Kim D; Brewer JM; Mendicino J
    Mol Cell Biochem; 1991 Mar; 102(1):71-93. PubMed ID: 2052001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of intermediates, products and cleavage site in the reaction between plasminogen activator inhibitor type-2 and urokinases.
    Kiso U; Kaudewitz H; Henschen A; Astedt B; Kruithof EK; Bachmann F
    FEBS Lett; 1988 Mar; 230(1-2):51-6. PubMed ID: 3280346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of plasminogen activator sequences to known protease structures.
    Strassburger W; Wollmer A; Pitts JE; Glover ID; Tickle IJ; Blundell TL; Steffens GJ; Günzler WA; Otting F; Flohé L
    FEBS Lett; 1983 Jul; 157(2):219-23. PubMed ID: 6345197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence polarization assay of plasmin, plasminogen, and plasminogen activator.
    Kinoshita K; Maeda H; Hinuma Y
    Anal Biochem; 1980 May; 104(1):15-22. PubMed ID: 6446247
    [No Abstract]   [Full Text] [Related]  

  • 12. Localization of the cleavage sites on fibronectin following digestion by urokinase.
    Gold LI; Rostagno A; Frangione B; Passalaris T
    J Cell Biochem; 1992 Dec; 50(4):441-52. PubMed ID: 1469074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the activation of bovine plasma factor XIII. Amino acid sequence of the peptide released by thrombin and the terminal residues of the subunit polypeptides.
    Nakamura S; Iwanaga S; Suzuki T
    J Biochem; 1975 Dec; 78(6):1247-66. PubMed ID: 1225922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The light-harvesting polypeptides of Rhodopseudomonas sphaeroides R-26.1. I. Isolation, purification and sequence analyses.
    Theiler R; Suter F; Wiemken V; Zuber H
    Hoppe Seylers Z Physiol Chem; 1984 Jul; 365(7):703-19. PubMed ID: 6384009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective activation of the proenzyme form of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L.
    Goretzki L; Schmitt M; Mann K; Calvete J; Chucholowski N; Kramer M; Günzler WA; Jänicke F; Graeff H
    FEBS Lett; 1992 Feb; 297(1-2):112-8. PubMed ID: 1551416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase enzyme immunoassay of urokinase using monoclonal antibodies.
    Hérion P; Portetelle D; Franssen JD; Urbain J; Bollen A
    Biosci Rep; 1983 Apr; 3(4):381-8. PubMed ID: 6347271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urinary and kidney cell plasminogen activator (urokinase).
    Barlow GH
    Methods Enzymol; 1976; 45():239-44. PubMed ID: 1011995
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of radioimmunoassays for high- and low-molecular weight urokinases and estimation of different molecular forms of urokinase in urine and plasma.
    Cheung T; Lui AY; Lau HK
    J Lab Clin Med; 1993 Mar; 121(3):461-71. PubMed ID: 8445294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activation mechanism of human plasminogen.
    Rickli EE
    Thromb Diath Haemorrh; 1975 Nov; 34(2):386-95. PubMed ID: 128150
    [No Abstract]   [Full Text] [Related]  

  • 20. Proteolytic regulation of the urokinase receptor/CD87 on monocytic cells by neutrophil elastase and cathepsin G.
    Beaufort N; Leduc D; Rousselle JC; Magdolen V; Luther T; Namane A; Chignard M; Pidard D
    J Immunol; 2004 Jan; 172(1):540-9. PubMed ID: 14688365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.