These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 7037787)
1. On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization. Dankert JR; Uratani Y; Grabau C; Cramer WA; Hermodson M J Biol Chem; 1982 Apr; 257(7):3857-63. PubMed ID: 7037787 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. Bullock JO; Cohen FS; Dankert JR; Cramer WA J Biol Chem; 1983 Aug; 258(16):9908-12. PubMed ID: 6309789 [TBL] [Abstract][Full Text] [Related]
3. Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments. Ohno-Iwashita Y; Imahori K J Biol Chem; 1982 Jun; 257(11):6446-51. PubMed ID: 7042712 [TBL] [Abstract][Full Text] [Related]
4. Purification of a small receptor-binding peptide from the central region of the colicin E1 molecule. Brunden KR; Cramer WA; Cohen FS J Biol Chem; 1984 Jan; 259(1):190-6. PubMed ID: 6368535 [TBL] [Abstract][Full Text] [Related]
5. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1. Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053 [TBL] [Abstract][Full Text] [Related]
6. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
7. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Zhang YL; Cramer WA Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805 [TBL] [Abstract][Full Text] [Related]
8. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1. Cleveland MV; Slatin S; Finkelstein A; Levinthal C Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3706-10. PubMed ID: 6304732 [TBL] [Abstract][Full Text] [Related]
9. Individual domains of colicins confer specificity in colicin uptake, in pore-properties and in immunity requirement. Benedetti H; Frenette M; Baty D; Knibiehler M; Pattus F; Lazdunski C J Mol Biol; 1991 Feb; 217(3):429-39. PubMed ID: 1704440 [TBL] [Abstract][Full Text] [Related]
10. A single tryptic fragment of colicin E1 can form an ion channel: stoichiometry confirms kinetics. Levinthal F; Todd AP; Hubbell WL; Levinthal C Proteins; 1991; 11(4):254-62. PubMed ID: 1722045 [TBL] [Abstract][Full Text] [Related]
11. Structural stability and domain organization of colicin E1. Griko YV; Zakharov SD; Cramer WA J Mol Biol; 2000 Sep; 302(4):941-53. PubMed ID: 10993734 [TBL] [Abstract][Full Text] [Related]
12. Crystallization and characterization of colicin E1 channel-forming polypeptides. Elkins PA; Song HY; Cramer WA; Stauffacher CV Proteins; 1994 Jun; 19(2):150-7. PubMed ID: 8090709 [TBL] [Abstract][Full Text] [Related]
13. Factors necessary for the export process of colicin E1 across cytoplasmic membrane of Escherichia coli. Yamada M; Nakazawa A Eur J Biochem; 1984 Apr; 140(2):249-55. PubMed ID: 6425060 [TBL] [Abstract][Full Text] [Related]
14. Dependence of the activity of colicin E1 in artificial membrane vesicles on pH, membrane potential, and vesicle size. Davidson VL; Cramer WA; Bishop LJ; Brunden KR J Biol Chem; 1984 Jan; 259(1):594-600. PubMed ID: 6706954 [TBL] [Abstract][Full Text] [Related]
15. Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation. Pilsl H; Braun V Mol Microbiol; 1995 Apr; 16(1):57-67. PubMed ID: 7651137 [TBL] [Abstract][Full Text] [Related]
16. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies. Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207 [TBL] [Abstract][Full Text] [Related]
17. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide. Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708 [TBL] [Abstract][Full Text] [Related]
18. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers. Collarini M; Amblard G; Lazdunski C; Pattus F Eur Biophys J; 1987; 14(3):147-53. PubMed ID: 3830093 [TBL] [Abstract][Full Text] [Related]
19. Proteolytic and chemical modification of colicin E3 activity. Lau C; Richards FM Biochemistry; 1976 Aug; 15(17):3856-63. PubMed ID: 782524 [TBL] [Abstract][Full Text] [Related]
20. Chemical modification of the two histidine and single cysteine residues in the channel-forming domain of colicin E1. Bishop LJ; Cohen FS; Davidson VL; Cramer WA J Membr Biol; 1986; 92(3):237-45. PubMed ID: 2431147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]