BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 7037793)

  • 21. Patterns of proteoglycan degradation by a neutral protease from human growth-plate epiphyseal cartilage.
    Ehrlich MG; Armstrong AL; Neuman RG; Davis MW; Mankin HJ
    J Bone Joint Surg Am; 1982 Dec; 64(9):1350-4. PubMed ID: 6754738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrastructural modifications of proteoglycans coincident with mineralization in local regions of rat growth plate.
    Shepard N; Mitchell N
    J Bone Joint Surg Am; 1985 Mar; 67(3):455-64. PubMed ID: 3972871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular matrix alterations during endochondral ossification in humans.
    Horton WA; Machado MM
    J Orthop Res; 1988; 6(6):793-803. PubMed ID: 2459331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage.
    Poole AR; Pidoux I; Reiner A; Rosenberg L
    J Cell Biol; 1982 Jun; 93(3):921-37. PubMed ID: 7119005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation.
    Melrose J; Shu C; Whitelock JM; Lord MS
    Matrix Biol; 2016; 52-54():363-383. PubMed ID: 26807757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage.
    von der Mark K; von der Mark H
    J Bone Joint Surg Br; 1977 Nov; 59-B(4):458-64. PubMed ID: 72756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian eyes and associated tissues contain molecules that are immunologically related to cartilage proteoglycan and link protein.
    Poole AR; Pidoux I; Reiner A; Cöster L; Hassell JR
    J Cell Biol; 1982 Jun; 93(3):910-20. PubMed ID: 7119004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of link protein on proteoglycan aggregate structure. An electron microscopic study of the molecular architecture and dimensions of proteoglycan aggregates reassembled from the proteoglycan monomers and link proteins of bovine fetal epiphyseal cartilage.
    Buckwalter JA; Rosenberg LC; Tang LH
    J Biol Chem; 1984 May; 259(9):5361-3. PubMed ID: 6715345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of cartilage proteoglycan (aggrecan) core protein and link protein gene expression during human skeletal development.
    Mundlos S; Meyer R; Yamada Y; Zabel B
    Matrix; 1991 Nov; 11(5):339-46. PubMed ID: 1725805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does the epiphyseal cartilage of the long bones have one or two ossification fronts?
    Delgado-Martos MJ; Touza Fernández A; Canillas F; Quintana-Villamandos B; Santos del Riego S; Delgado-Martos E; Martos-Rodriguez A; Delgado-Baeza E
    Med Hypotheses; 2013 Oct; 81(4):695-700. PubMed ID: 23953967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of NG2 proteoglycan during endochondral and intramembranous ossification.
    Fukushi J; Inatani M; Yamaguchi Y; Stallcup WB
    Dev Dyn; 2003 Sep; 228(1):143-8. PubMed ID: 12950088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of alendronate on endochondral ossification in mandibular condyles of growing rats.
    Bradaschia-Correa V; Barrence FA; Ferreira LB; Massa LF; Arana-Chavez VE
    Eur J Histochem; 2012 May; 56(2):e24. PubMed ID: 22688305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteoglycan degradation in growth plate cartilage.
    Makihira S; Yan W; Murakami H; Furukawa M; Kawai T; Nikawa H; Yoshida E; Hamada T; Okada Y; Kato Y
    Endocrinology; 2003 Jun; 144(6):2480-8. PubMed ID: 12746310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The association of a newly discovered protein, called chondrocalcin, with cartilage calcification.
    Poole AR; Pidoux I; Reiner A; Choi H; Rosenberg LC
    Acta Biol Hung; 1984; 35(2-4):143-9. PubMed ID: 6242444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Association of the C-propeptide of type II collagen with mineralization of embryonic chick long bone and sternal development.
    Kujawa MJ; Weitzhandler M; Poole AR; Rosenberg L; Caplan AI
    Connect Tissue Res; 1989; 23(2-3):179-99. PubMed ID: 2630170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteoglycans of developing bone.
    Fisher LW; Termine JD; Dejter SW; Whitson SW; Yanagishita M; Kimura JH; Hascall VC; Kleinman HK; Hassell JR; Nilsson B
    J Biol Chem; 1983 May; 258(10):6588-94. PubMed ID: 6189828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential rates of aggrecan synthesis and breakdown in different zones of the bovine growth plate.
    Shapses SA; Sandell LJ; Ratcliffe A
    Matrix Biol; 1994 Jan; 14(1):77-86. PubMed ID: 8061922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mice lacking link protein develop dwarfism and craniofacial abnormalities.
    Watanabe H; Yamada Y
    Nat Genet; 1999 Feb; 21(2):225-9. PubMed ID: 9988279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Persistence of Cartilage proteoglycan and link protein during matrix-induced endochondral bone development: an immunofluorescent study.
    Poole AR; Reddi AH; Rosenberg LC
    Dev Biol; 1982 Feb; 89(2):532-9. PubMed ID: 7035258
    [No Abstract]   [Full Text] [Related]  

  • 40. Changes in proteoglycan aggregates during cartilage mineralization.
    Buckwalter JA; Rosenberg LC; Ungar R
    Calcif Tissue Int; 1987 Oct; 41(4):228-36. PubMed ID: 3119178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.