These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7038038)

  • 1. The mode of action of nosiheptide (multhiomycin) and the mechanism of resistance in the producing organism.
    Cundliffe E; Thompson J
    J Gen Microbiol; 1981 Sep; 126(1):185-92. PubMed ID: 7038038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mode of action of berninamycin and mechanism of resistance in the producing organism, Streptomyces bernensis.
    Thompson J; Cundliffe E; Stark MJ
    J Gen Microbiol; 1982 Apr; 128(4):875-84. PubMed ID: 6181185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus.
    Cundliffe E
    Nature; 1978 Apr; 272(5656):792-5. PubMed ID: 643068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance to thiostrepton, siomycin, and sporangiomycin in actinomycetes that produce them.
    Thompson J; Cundliffe E
    J Bacteriol; 1980 May; 142(2):455-61. PubMed ID: 6155371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of the ribosomes of antibiotic producers: effects thiostrepton and micrococcin on the organisms which produce them.
    Dixon PG; Beven JE; Cundliffe E
    Antimicrob Agents Chemother; 1975 Jun; 7(6):850-5. PubMed ID: 1155929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanism of action of the new antibiotic kirromycin].
    Sander G
    Reprod Nutr Dev (1980); 1981; 21(2):185-92. PubMed ID: 6130579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerning the mode of action of micrococcin upon bacterial protein synthesis.
    Cundliffe E; Thompson J
    Eur J Biochem; 1981 Aug; 118(1):47-52. PubMed ID: 6116602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Antibiotics as inhibitors of the prokaryotic protein biosynthesis: action and resistance mechanisms (author's transl)].
    Nierhaus KH
    Immun Infekt; 1981; 9(3):88-98. PubMed ID: 6166542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR; Potapov AP; de Graaf JM; Kraal B
    J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome.
    Cameron DM; Thompson J; March PE; Dahlberg AE
    J Mol Biol; 2002 May; 319(1):27-35. PubMed ID: 12051934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal modification and resistance in antibiotic-producing organisms.
    Cundliffe E
    Biochem Soc Symp; 1987; 53():1-8. PubMed ID: 3332760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre.
    Porse BT; Leviev I; Mankin AS; Garrett RA
    J Mol Biol; 1998 Feb; 276(2):391-404. PubMed ID: 9512711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton.
    Thompson J; Schmidt F; Cundliffe E
    J Biol Chem; 1982 Jul; 257(14):7915-7. PubMed ID: 6806287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning of the nosiheptide resistance gene from Streptomyces actuosus ATCC 25421.
    Dosch DC; Strohl WR; Floss HG
    Biochem Biophys Res Commun; 1988 Oct; 156(1):517-23. PubMed ID: 2845982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for contrasting activities of ribosome binding thiazole antibiotics.
    Lentzen G; Klinck R; Matassova N; Aboul-ela F; Murchie AI
    Chem Biol; 2003 Aug; 10(8):769-78. PubMed ID: 12954336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA.
    Moazed D; Robertson JM; Noller HF
    Nature; 1988 Jul; 334(6180):362-4. PubMed ID: 2455872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bacteriocidal activity of Streptomyces cultures].
    Polishchuk LV; Bambura OI; Luk'ianchuk VV
    Mikrobiol Z; 2012; 74(4):45-51. PubMed ID: 23088099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomes and ribosomal RNA as chaperones for folding of proteins.
    Kudlicki W; Coffman A; Kramer G; Hardesty B
    Fold Des; 1997; 2(2):101-8. PubMed ID: 9135982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of proteins from Escherichia coli ribosomes after dimethylmaleic anhydride treatment. Effects of elongation factor G and antibiotics.
    Pintor-Toro JA; López-Rivas A; Hernández F; Palacián E
    FEBS Lett; 1981 Nov; 135(1):21-4. PubMed ID: 7032970
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure-based design of agents targeting the bacterial ribosome.
    Bower J; Drysdale M; Hebdon R; Jordan A; Lentzen G; Matassova N; Murchie A; Powles J; Roughley S
    Bioorg Med Chem Lett; 2003 Aug; 13(15):2455-8. PubMed ID: 12852942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.