These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7038626)

  • 1. Dihydrouridine-deficient tRNAs in Saccharomyces cerevisiae.
    Lo RY; Bell JB; Roy KL
    Nucleic Acids Res; 1982 Feb; 10(3):889-902. PubMed ID: 7038626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a mutation in Saccharomyces cerevisiae that produces mutant isoaccepting tRNAs for several of its tRNA species : Physiological studies.
    Lo RY; Bell JB
    Curr Genet; 1981 Apr; 3(1):73-82. PubMed ID: 24189955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple isoacceptor forms of several transfer ribonucleic acids in a mutant yeast strain.
    Bell JB; Jacobson KB; Shugart LR
    Can J Biochem; 1978 Jan; 56(1):51-9. PubMed ID: 378329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheat germ tRNAs containing uridine in place of ribothymidine: a characterization of an unusual class of eukaryotic tRNAs.
    Marcu K; Marcu D; Dudock B
    Nucleic Acids Res; 1978 Apr; 5(4):1075-92. PubMed ID: 652515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
    Xing F; Hiley SL; Hughes TR; Phizicky EM
    J Biol Chem; 2004 Apr; 279(17):17850-60. PubMed ID: 14970222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutant of Saccharomyces cerevisiae that exhibits multiple isoacceptors for several of its transfer RNAs.
    Bell JB; Lo RY; Quah SK
    Mol Gen Genet; 1977 Jun; 153(2):145-51. PubMed ID: 329112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional role of ribosylthymine in transfer RNA. Preferential utilization of tRNAs containing ribosylthymine instead of uridine at position 54 in protein synthesis of Dictyostelium discoideum.
    Dingermann T; Pistel F; Kersten H
    Eur J Biochem; 1980 Feb; 104(1):33-40. PubMed ID: 7371636
    [No Abstract]   [Full Text] [Related]  

  • 8. Structural analysis of O2'-methyl-5-carbamoylmethyluridine, a newly discovered constituent of yeast transfer RNA.
    Gray MW
    Biochemistry; 1976 Jul; 15(14):3046-51. PubMed ID: 8080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae.
    Damon JR; Pincus D; Ploegh HL
    Mol Biol Cell; 2015 Jan; 26(2):270-82. PubMed ID: 25392298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of cytokinin-active nucleosides in isoaccepting transfer ribonucleic acids from Agrobacterium tumefaciens.
    Morris RO; Regier DA; Olson RM; Struxness LA; Armstrong DJ
    Biochemistry; 1981 Oct; 20(21):6012-7. PubMed ID: 7306490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of Saccharomyces cerevisiae tRNAs on two-dimensional polyacrylamide gels as applied to investigations on the mutational alterations of tRNA that produce nonsense suppressors.
    Piper PW; Wasserstein M
    Eur J Biochem; 1977 Oct; 80(1):103-9. PubMed ID: 336364
    [No Abstract]   [Full Text] [Related]  

  • 13. Cytoplasmic splicing of tRNA in Saccharomyces cerevisiae.
    Yoshihisa T; Ohshima C; Yunoki-Esaki K; Endo T
    Genes Cells; 2007 Mar; 12(3):285-97. PubMed ID: 17352735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of D Modification Sites by Integrating Heterogeneous Features in
    Feng P; Xu Z; Yang H; Lv H; Ding H; Liu L
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the reactivity of pyridoxal-5'-phosphate with yeast tRNAPhe and tRNATyr.
    Okabe N; Cramer F
    Z Naturforsch C Biosci; 1980; 35(5-6):522-5. PubMed ID: 6773259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elongator-a tRNA modifying complex that promotes efficient translational decoding.
    Johansson MJO; Xu F; Byström AS
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):401-408. PubMed ID: 29170010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of ribothymidine in mammalian tRNAPhe.
    Roe BA; Tsen HY
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3696-700. PubMed ID: 269424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heterologous system for detecting eukaryotic enzymes which synthesize pseudouridine in transfer ribonucleic acids.
    Mullenbach GT; Kammen HO; Penhoet EE
    J Biol Chem; 1976 Aug; 251(15):4570-8. PubMed ID: 780353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-species aminoacylation of tRNA with a long variable arm between Escherichia coli and Saccharomyces cerevisiae.
    Soma A; Himeno H
    Nucleic Acids Res; 1998 Oct; 26(19):4374-81. PubMed ID: 9742237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The accuracy of poly(U) translation by different eukaryotic tRNAs.
    El'skaya AV; Soldatkin AP
    FEBS Lett; 1983 Nov; 164(1):93-6. PubMed ID: 6360713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.