These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 7038687)

  • 21. Identification of the heat-inducible protein C15.4 as the groES gene product in Escherichia coli.
    Tilly K; VanBogelen RA; Georgopoulos C; Neidhardt FC
    J Bacteriol; 1983 Jun; 154(3):1505-7. PubMed ID: 6343358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Requirement of the Escherichia coli dnaK gene for thermotolerance and protection against H2O2.
    Delaney JM
    J Gen Microbiol; 1990 Oct; 136(10):2113-8. PubMed ID: 2269877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Escherichia coli defects caused by null mutations in dnaK and dnaJ genes.
    Paciorek J; Kardyś K; Lobacz B; Wolska KI
    Acta Microbiol Pol; 1997; 46(1):7-17. PubMed ID: 9271843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning and expression of a gene that controls the high-temperature regulon of Escherichia coli.
    Neidhardt FC; VanBogelen RA; Lau ET
    J Bacteriol; 1983 Feb; 153(2):597-603. PubMed ID: 6337122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor.
    Liberek K; Galitski TP; Zylicz M; Georgopoulos C
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3516-20. PubMed ID: 1565647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new Escherichia coli heat shock gene, htrC, whose product is essential for viability only at high temperatures.
    Raina S; Georgopoulos C
    J Bacteriol; 1990 Jun; 172(6):3417-26. PubMed ID: 2160943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli.
    Yuzawa H; Nagai H; Mori H; Yura T
    Nucleic Acids Res; 1993 Nov; 21(23):5449-55. PubMed ID: 7505426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nucleotide sequence in the translation start signal region is involved in heat shock-induced translation arrest in Escherichia coli.
    Kuriki Y
    FEBS Lett; 1990 May; 264(1):121-4. PubMed ID: 2186926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. lon gene product of Escherichia coli is a heat-shock protein.
    Phillips TA; VanBogelen RA; Neidhardt FC
    J Bacteriol; 1984 Jul; 159(1):283-7. PubMed ID: 6330035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the heat shock response in stability of mRNA in Escherichia coli K-12.
    Henry MD; Yancey SD; Kushner SR
    J Bacteriol; 1992 Feb; 174(3):743-8. PubMed ID: 1732210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. recA gene involvement in oxidative and thermal stress in Lactococcus lactis.
    Duwat P; Sourice S; Ehrlich SD; Gruss A
    Dev Biol Stand; 1995; 85():455-67. PubMed ID: 8586217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A gene regulating the heat shock response in Escherichia coli also affects proteolysis.
    Baker TA; Grossman AD; Gross CA
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6779-83. PubMed ID: 6387713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Escherichia coli cells with mutations in the gene for adenylate cyclase (cya) exhibit a heat shock response.
    Lee-Rivera I; Gómez-Eichelmann MC
    FEMS Microbiol Lett; 1994 Aug; 121(1):35-8. PubMed ID: 8082825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli.
    Jenkins DE; Schultz JE; Matin A
    J Bacteriol; 1988 Sep; 170(9):3910-4. PubMed ID: 3045081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12.
    Díaz-Acosta A; Sandoval ML; Delgado-Olivares L; Membrillo-Hernández J
    Arch Microbiol; 2006 Jun; 185(6):429-38. PubMed ID: 16775749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.