These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 7039151)
1. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae. van Uden N; da Cruz Duarte H Z Allg Mikrobiol; 1981; 21(10):743-50. PubMed ID: 7039151 [TBL] [Abstract][Full Text] [Related]
2. Effects of chloramphenicol on the thermal profile of Saccharomyces cerevisiae. Madeira-Lopes A; van Uden N Z Allg Mikrobiol; 1981; 21(1):53-5. PubMed ID: 7013287 [TBL] [Abstract][Full Text] [Related]
3. Effects of cycloheximide on the temperature profile of Sacharomyces cerevisiae. Madeira-Lopes A; Van Uden N Z Allg Mikrobiol; 1983; 23(7):467-9. PubMed ID: 6356641 [TBL] [Abstract][Full Text] [Related]
4. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043 [TBL] [Abstract][Full Text] [Related]
5. Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production. Aldiguier AS; Alfenore S; Cameleyre X; Goma G; Uribelarrea JL; Guillouet SE; Molina-Jouve C Bioprocess Biosyst Eng; 2004 Jul; 26(4):217-22. PubMed ID: 15098119 [TBL] [Abstract][Full Text] [Related]
6. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash. Graves T; Narendranath NV; Dawson K; Power R Appl Microbiol Biotechnol; 2007 Jan; 73(5):1190-6. PubMed ID: 17058076 [TBL] [Abstract][Full Text] [Related]
7. Dynamic microbial response under ethanol stress to monitor Saccharomyces cerevisiae activity in different initial physiological states. Sanchez-Gonzalez Y; Cameleyre X; Molina-Jouve C; Goma G; Alfenore S Bioprocess Biosyst Eng; 2009 Jun; 32(4):459-66. PubMed ID: 18923846 [TBL] [Abstract][Full Text] [Related]
8. [Study on ethanol tolerance of Saccharomyces cerevisiae X330 under very high gravity medium]. Xue YM; Jiang N Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):508-13. PubMed ID: 16755936 [TBL] [Abstract][Full Text] [Related]
9. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
10. [The growth characteristics of the yeast Saccharomyces cerevisiae on media containing ethanol and saccharose]. Podgorskiĭ VS; Gavrilenko MN; Sumnevich VG; Zyrianova LF Mikrobiol Z; 1995; 57(1):19-24. PubMed ID: 7728273 [TBL] [Abstract][Full Text] [Related]
11. Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Salvadó Z; Arroyo-López FN; Barrio E; Querol A; Guillamón JM Food Microbiol; 2011 Sep; 28(6):1155-61. PubMed ID: 21645814 [TBL] [Abstract][Full Text] [Related]
12. Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability. Laluce C; Tognolli JO; de Oliveira KF; Souza CS; Morais MR Appl Microbiol Biotechnol; 2009 Jun; 83(4):627-37. PubMed ID: 19234699 [TBL] [Abstract][Full Text] [Related]
13. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae. Amillastre E; Aceves-Lara CA; Uribelarrea JL; Alfenore S; Guillouet SE Bioresour Technol; 2012 Aug; 117():242-50. PubMed ID: 22617033 [TBL] [Abstract][Full Text] [Related]
14. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters. Dung NT; Rombouts FM; Nout MJ Food Microbiol; 2006 Jun; 23(4):331-40. PubMed ID: 16943022 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Vianna CR; Silva CL; Neves MJ; Rosa CA Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of ethanol production from coffee husks. Gouvea BM; Torres C; Franca AS; Oliveira LS; Oliveira ES Biotechnol Lett; 2009 Sep; 31(9):1315-9. PubMed ID: 19466561 [TBL] [Abstract][Full Text] [Related]
17. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study. Kasemets K; Nisamedtinov I; Laht TM; Abner K; Paalme T Antonie Van Leeuwenhoek; 2007 Jul; 92(1):109-28. PubMed ID: 17268890 [TBL] [Abstract][Full Text] [Related]
18. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Chandel AK; Narasu ML; Chandrasekhar G; Manikyam A; Rao LV Bioresour Technol; 2009 Apr; 100(8):2404-10. PubMed ID: 19114303 [TBL] [Abstract][Full Text] [Related]
19. New separation methodologies for the distinction of the growth phases of Saccharomyces cerevisiae cell cycle. Lainioti GCh; Kapolos J; Koliadima A; Karaiskakis G J Chromatogr A; 2010 Mar; 1217(11):1813-20. PubMed ID: 20117786 [TBL] [Abstract][Full Text] [Related]
20. Continuous ethanol production in a nonconventional five-stage system operating with yeast cell recycling at elevated temperatures. Laluce C; Souza CS; Abud CL; Gattas EA; Walker GM J Ind Microbiol Biotechnol; 2002 Sep; 29(3):140-4. PubMed ID: 12242636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]