BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 7040300)

  • 1. Metabolic studies with an isolated, perfused rat brain preparation.
    Sloviter HA
    Isr J Med Sci; 1982 Jan; 18(1):59-66. PubMed ID: 7040300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex vivo NMR study of lactate metabolism in rat brain under various depressed states.
    Serres S; Bezancon E; Franconi JM; Merle M
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):19-25. PubMed ID: 15558748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanisms of the protective effect of methohexital on cerebral energy metabolism].
    Hanke J; Krieglstein J
    Arzneimittelforschung; 1982; 32(6):620-5. PubMed ID: 7202367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Increase in extracellular levels of serotonin and amino acids in the rat brain following cyanide-induced energy failure].
    Yamazaki Y; Kiuchi Y; Inagaki M; Matsumoto M; Yokomizo C; Nakachi N; Uchikawa T; Oguchi K
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1995 Aug; 15(4):323-33. PubMed ID: 7584727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Control of supply and use of energy substrates in the encephalon].
    Schelp AO; Burini RC
    Arq Neuropsiquiatr; 1995 Sep; 53(3-B):690-7. PubMed ID: 8585833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of brain lactate in neuronal metabolism.
    Serres S; Bouyer JJ; Bezancon E; Canioni P; Merle M
    NMR Biomed; 2003; 16(6-7):430-9. PubMed ID: 14679505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists.
    Rowley M; Kulagowski JJ; Watt AP; Rathbone D; Stevenson GI; Carling RW; Baker R; Marshall GR; Kemp JA; Foster AC; Grimwood S; Hargreaves R; Hurley C; Saywell KL; Tricklebank MD; Leeson PD
    J Med Chem; 1997 Dec; 40(25):4053-68. PubMed ID: 9406596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo metabolic effects of naringenin in the ethanol consuming rat and the effect of naringenin on adipocytes in vitro.
    Szkudelska K; Nogowski L; Nowicka E; Szkudelski T
    J Anim Physiol Anim Nutr (Berl); 2007 Apr; 91(3-4):91-9. PubMed ID: 17355338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. d-Methadone blocks morphine tolerance and N-methyl-D-aspartate-induced hyperalgesia.
    Davis AM; Inturrisi CE
    J Pharmacol Exp Ther; 1999 May; 289(2):1048-53. PubMed ID: 10215686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of glucagon secretion.
    Young A
    Adv Pharmacol; 2005; 52():151-71. PubMed ID: 16492545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro.
    Doenst T; Goodwin GW; Cedars AM; Wang M; Stepkowski S; Taegtmeyer H
    Metabolism; 2001 Sep; 50(9):1083-90. PubMed ID: 11555843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of morphine and methadone on the isolated perfused rat brain.
    Mukherji B; Suemaru K; Sakai N; Ghosh AK; Sloviter HA
    Biochem Pharmacol; 1980 Jun; 29(11):1608-11. PubMed ID: 7396993
    [No Abstract]   [Full Text] [Related]  

  • 13. Blood-brain barrier permeability and bioavailability of a highly potent and mu-selective opioid receptor antagonist, CTAP: comparison with morphine.
    Abbruscato TJ; Thomas SA; Hruby VJ; Davis TP
    J Pharmacol Exp Ther; 1997 Jan; 280(1):402-9. PubMed ID: 8996221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway.
    Stadlbauer K; Brunmair B; Szöcs Z; Krebs M; Luger A; Fürnsinn C
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E785-92. PubMed ID: 19622787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative effects of thermal injury and insulin on the metabolism of the skeletal muscle using the perfused rat hindquarter preparation.
    Banta S; Yokoyama T; Berthiaume F; Yarmush ML
    Biotechnol Bioeng; 2004 Dec; 88(5):613-29. PubMed ID: 15470703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain.
    Serres S; Raffard G; Franconi JM; Merle M
    J Cereb Blood Flow Metab; 2008 Apr; 28(4):712-24. PubMed ID: 17940539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic effects of carbenoxolone in rat liver.
    Pivato LS; Constantin RP; Ishii-Iwamoto EL; Kelmer-Bracht AM; Yamamoto NS; Constantin J; Bracht A
    J Biochem Mol Toxicol; 2006; 20(5):230-40. PubMed ID: 17009240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the permeation characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs across the blood-brain barrier using an in situ perfused rat brain model.
    Chen W; Yang JZ; Andersen R; Nielsen LH; Borchardt RT
    J Pharmacol Exp Ther; 2002 Nov; 303(2):849-57. PubMed ID: 12388672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biochemical analysis of methadone modulation on morphine-induced tolerance and dependence in the rat brain.
    He L; Whistler JL
    Pharmacology; 2007; 79(4):193-202. PubMed ID: 17356311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolated perfused liver model: the rat and guinea pig compared.
    Chaïb S; Charrueau C; Neveux N; Coudray-Lucas C; Cynober L; De Bandt JP
    Nutrition; 2004 May; 20(5):458-64. PubMed ID: 15105034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.