These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7040348)

  • 61. Identification of AAS genes and their regulatory role in general control of amino acid biosynthesis in yeast.
    Penn MD; Galgoci B; Greer H
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2704-8. PubMed ID: 6341997
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reversible dissociation of threonine deaminase in an ilvl mutant of Saccharomyces cerevisiae.
    Karassevitch Y; Robichon-Szulmajster H
    Mol Gen Genet; 1972; 117(2):113-23. PubMed ID: 4561422
    [No Abstract]   [Full Text] [Related]  

  • 63. Biosynthesis of lysine in Saccharomyces cervisiae: properties and spectrophotometric determination of homocitrate synthase activity.
    Gray GS; Bhattacharjee JK
    Can J Microbiol; 1976 Nov; 22(11):1664-7. PubMed ID: 10066
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In Saccharomyces cerevisae, feedback inhibition of homocitrate synthase isoenzymes by lysine modulates the activation of LYS gene expression by Lys14p.
    Feller A; Ramos F; Piérard A; Dubois E
    Eur J Biochem; 1999 Apr; 261(1):163-70. PubMed ID: 10103047
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Arginine restriction induced by delta-N-(phosphonacetyl)-L-ornithine signals increased expression of HIS3, TRP5, CPA1, and CPA2 in Saccharomyces cerevisiae.
    Kinney DM; Lusty CJ
    Mol Cell Biol; 1989 Nov; 9(11):4882-8. PubMed ID: 2689869
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isopropylmalate dehydratase from yeast.
    Kohlhaw GB
    Methods Enzymol; 1988; 166():423-9. PubMed ID: 3071717
    [No Abstract]   [Full Text] [Related]  

  • 67. The regulation of arginine biosynthesis in Saccharomyces cerevisiae. The specificity of argR- mutations and the general control of amino-acid biosynthesis.
    Delforge J; Messenguy F; Wiame JM
    Eur J Biochem; 1975 Sep; 57(1):231-9. PubMed ID: 1100402
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Construction and characterization of Salmonella typhimurium strains that accumulate and excrete alpha- and beta-isopropylmalate.
    Fultz PN; Choung KK; Kemper J
    J Bacteriol; 1980 May; 142(2):513-20. PubMed ID: 6991477
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of citrate synthase activity of Saccharomyces cerevisiae.
    Coleman JS; Bhattacharjee JK
    Antonie Van Leeuwenhoek; 1975; 41(3):249-56. PubMed ID: 2100
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Properties of some norvaline-resistant mutants of Bacillus subtilis.
    Holtzclaw WD; Chapman LF
    J Gen Microbiol; 1975 Jun; 88(2):289-94. PubMed ID: 807681
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular cloning and nucleotide sequence of the 3-isopropylmalate dehydrogenase gene of Candida utilis.
    Hamasawa K; Kobayashi Y; Harada S; Yoda K; Yamasaki M; Tamura G
    J Gen Microbiol; 1987 Apr; 133(4):1089-97. PubMed ID: 3309174
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Derepressed levels of the isoleucine-valine and leucine enzymes in his T 1504, a strain of Salmonella typhimurium with altered leucine transfer ribonucleic acid.
    Rizzino AA; Bresalier RS; Freundlich M
    J Bacteriol; 1974 Feb; 117(2):449-55. PubMed ID: 4359646
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The product of the leu-3 cistron as a regulatory element for the production of the leucine biosynthetic enzymes of Neurospora.
    Polacco JC; Gross SR
    Genetics; 1973 Jul; 74(3):443-59. PubMed ID: 4744402
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae.
    Mountain HA; Byström AS; Korch C
    Mol Microbiol; 1993 Jan; 7(2):215-28. PubMed ID: 8446029
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nucleotide sequence of the 3' terminal region of the LEU2 gene from Saccharomyces cerevisiae.
    Froman BE; Tait RC; Rodriguez RL
    Gene; 1984 Nov; 31(1-3):257-61. PubMed ID: 6396161
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transposed LEU2 gene of Saccharomyces cerevisiae is regulated normally.
    Kohlhaw GB; Hsu YP; Lemmon RD; Petes TD
    J Bacteriol; 1980 Nov; 144(2):852-5. PubMed ID: 7000755
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Specialization of the paralogue LYS21 determines lysine biosynthesis under respiratory metabolism in Saccharomyces cerevisiae.
    Quezada H; Aranda C; DeLuna A; Hernández H; Calcagno ML; Marín-Hernández Á; González A
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1656-1667. PubMed ID: 18524920
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Suppressor studies on ilvI mutants of Saccharomyces cerevisiae.
    Gundelach E
    Mutat Res; 1973 Oct; 20(1):25-33. PubMed ID: 4586552
    [No Abstract]   [Full Text] [Related]  

  • 79. Enhanced formation of isoamyl alcohol in Zygosaccharomyces rouxii due to elimination of feedback inhibition of alpha-isopropylmalate synthase.
    Yoshikawa S; Oguri I; Kondo K; Fukuzawa M; Shimosaka M; Okazaki M
    FEMS Microbiol Lett; 1995 Mar; 127(1-2):139-43. PubMed ID: 7737476
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae.
    Dumlao DS; Hertz N; Clarke S
    Biochemistry; 2008 Jan; 47(2):698-709. PubMed ID: 18092814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.