These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 7040917)

  • 1. [Specific polysaccharides of Escherichia coli mutants defective for the utilization of various carbohydrates].
    Zdorovenko GM; Koshechkina LP
    Mikrobiol Zh (1978); 1982; 44(1):7-12. PubMed ID: 7040917
    [No Abstract]   [Full Text] [Related]  

  • 2. [Nature of bacterial phage receptors].
    Shoshiev LN; Novosel'tsev NN
    Mikrobiol Zh (1978); 1980; 42(3):394-402. PubMed ID: 6772928
    [No Abstract]   [Full Text] [Related]  

  • 3. [Phenotypic traits of Escherichia coli mutants defective in carbohydrate utilization].
    Zdorovenko GM; Skripnik SI
    Mikrobiol Zh (1978); 1981; 43(6):734-8. PubMed ID: 7035847
    [No Abstract]   [Full Text] [Related]  

  • 4. [Structure of lipopolysaccharide from a streptomycin-dependent S. enteritidis mutant].
    Edvabnaia LS; Stantsslavskiĭ ES; Sergeev VV; Vargina AK
    Vopr Med Khim; 1969; 15(4):409-13. PubMed ID: 4981871
    [No Abstract]   [Full Text] [Related]  

  • 5. Mutations in the waaR gene of Escherichia coli which disrupt lipopolysaccharide outer core biosynthesis affect cell surface retention of group 2 capsular polysaccharides.
    Taylor CM; Goldrick M; Lord L; Roberts IS
    J Bacteriol; 2006 Feb; 188(3):1165-8. PubMed ID: 16428421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered sugar selection and transport conferred by spontaneous point and deletion mutations in the lactose carrier of Escherichia coli.
    Shinnick SG; Varela MF
    J Membr Biol; 2002 Oct; 189(3):191-9. PubMed ID: 12395284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis within the central constriction site of ScrY (sucroseporin): effect on ion transport and comparison of maltooligosaccharide binding to LamB of Escherichia coli.
    Kim BH; Andersen C; Kreth J; Ulmke C; Schmid K; Benz R
    J Membr Biol; 2002 Jun; 187(3):239-53. PubMed ID: 12163981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the carbohydrate recognition domain of lung surfactant protein D and demonstration of its binding to lipopolysaccharides of gram-negative bacteria.
    Lim BL; Wang JY; Holmskov U; Hoppe HJ; Reid KB
    Biochem Biophys Res Commun; 1994 Aug; 202(3):1674-80. PubMed ID: 8060356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Lipopolysaccharides of the cell membranes of bacteria of the genus Pseudononas. II. Gel filtration of partially degraded polysaccharides].
    Kasianchuk NV; Zakharova IIa
    Mikrobiol Zh (1978); 1979; 41(3):229-34. PubMed ID: 481264
    [No Abstract]   [Full Text] [Related]  

  • 10. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity.
    Farnaud S; Spiller C; Moriarty LC; Patel A; Gant V; Odell EW; Evans RW
    FEMS Microbiol Lett; 2004 Apr; 233(2):193-9. PubMed ID: 15063486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions.
    Bishop DG; Work E
    Biochem J; 1965 Aug; 96(2):567-76. PubMed ID: 4953781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolism of beta-glucosides in Escherichia coli K12.
    Defez R; De Felice M
    Ann Microbiol (Paris); 1982; 133(3):347-50. PubMed ID: 6808882
    [No Abstract]   [Full Text] [Related]  

  • 13. Study of Shwartzman toxicity of Escherichia coli lipopolysaccharides.
    NETER E; MIRAND EA; WESTPHAL O; LUDERITZ O
    J Bacteriol; 1957 Jul; 74(1):111-2. PubMed ID: 13462972
    [No Abstract]   [Full Text] [Related]  

  • 14. Carbohydrases and their role in the biology of pathogenic fungi.
    Elinov NP
    Zentralbl Bakteriol Mikrobiol Hyg A; 1984 Jul; 257(2):246-56. PubMed ID: 6385562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of the signal peptides in protein secretion across the membrane.
    Inouye S; Inouye M
    Ann Microbiol (Paris); 1982; 133(2):257-9. PubMed ID: 7044215
    [No Abstract]   [Full Text] [Related]  

  • 16. Utilization and phosphorylation of sugars by Escherichia coli.
    ASENSIO C; SOLS A
    Rev Esp Fisiol; 1958 Dec; 14(4):269-75. PubMed ID: 13658662
    [No Abstract]   [Full Text] [Related]  

  • 17. The heat balance in Escherichia coli cultures grown on synthetic media containing various carbohydrates.
    Czerniawski E; Sedlaczek L; Zablocki B
    Bull Acad Pol Sci Biol; 1965; 13(5):291-3. PubMed ID: 5319711
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli.
    Sperandeo P; Cescutti R; Villa R; Di Benedetto C; Candia D; Dehò G; Polissi A
    J Bacteriol; 2007 Jan; 189(1):244-53. PubMed ID: 17056748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage PhiX174's ecological niche and the flexibility of its Escherichia coli lipopolysaccharide receptor.
    Michel A; Clermont O; Denamur E; Tenaillon O
    Appl Environ Microbiol; 2010 Nov; 76(21):7310-3. PubMed ID: 20833781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of polymyxin-resistant mutants of Salmonella typhimurium and Escherichia coli.
    Helander IM; Nummila K; Kilpeläinen I; Vaara M
    Prog Clin Biol Res; 1995; 392():15-23. PubMed ID: 8524920
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.