These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7041125)

  • 1. Gap misrepair mutagenesis: efficient site-directed induction of transition, transversion, and frameshift mutations in vitro.
    Shortle D; Grisafi P; Benkovic SJ; Botstein D
    Proc Natl Acad Sci U S A; 1982 Mar; 79(5):1588-92. PubMed ID: 7041125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-stranded gaps as localized targets for in vitro mutagenesis.
    Shortle D; Botstein D
    Basic Life Sci; 1982; 20():147-55. PubMed ID: 6287991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific gap-misrepair mutagenesis by O4-ethylthymine.
    Duran HL; Wani AA
    Biochim Biophys Acta; 1987 Jan; 908(1):60-9. PubMed ID: 3026482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic techniques for the isolation of random single-base substitutions in vitro at high frequency.
    AbarzĂșa P; Marians KJ
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2030-4. PubMed ID: 6326100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segment-directed mutagenesis: construction in vitro of point mutations limited to a small predetermined region of a circular DNA molecule.
    Shortle D; Koshland D; Weinstock GM; Botstein D
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5375-9. PubMed ID: 6254078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed insertion of long single-stranded DNA fragments into plasmid DNA.
    Mazin AV; Saparbaev MK; Ovchinnikova LP; Dianov GL; Salganik RI
    DNA Cell Biol; 1990; 9(1):63-9. PubMed ID: 2317271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of lambda exonuclease for efficient oligonucleotide-mediated site-directed deletion and point mutation of double-stranded DNA.
    Palermo DP; Hess GF
    DNA; 1987 Jun; 6(3):273-9. PubMed ID: 2954801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA sequence analysis of mutations induced by N-2-acetylamino-7-iodofluorene in plasmid pBR322 in Escherichia coli.
    Hoffmann GR; Fuchs RP
    J Mol Biol; 1990 May; 213(2):239-46. PubMed ID: 2187998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites.
    Wells JA; Vasser M; Powers DB
    Gene; 1985; 34(2-3):315-23. PubMed ID: 3891521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bypass and termination at apurinic sites during replication of single-stranded DNA in vitro: a model for apurinic site mutagenesis.
    Hevroni D; Livneh Z
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5046-50. PubMed ID: 3293048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli mutator (Delta)polA is defective in base mismatch correction: the nature of in vivo DNA replication errors.
    Tago Y; Imai M; Ihara M; Atofuji H; Nagata Y; Yamamoto K
    J Mol Biol; 2005 Aug; 351(2):299-308. PubMed ID: 16005896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient site-directed mutagenesis by simultaneous use of two primers.
    Norris K; Norris F; Christiansen L; Fiil N
    Nucleic Acids Res; 1983 Aug; 11(15):5103-12. PubMed ID: 6308572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis.
    Nakamaye KL; Eckstein F
    Nucleic Acids Res; 1986 Dec; 14(24):9679-98. PubMed ID: 3027659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli.
    Yoshiyama K; Higuchi K; Matsumura H; Maki H
    J Mol Biol; 2001 Apr; 307(5):1195-206. PubMed ID: 11292335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-free system for studying a priming factor involved in repair of bleomycin-damaged DNA.
    Seki S; Arakaki Y; Oda T
    Acta Med Okayama; 1989 Apr; 43(2):73-80. PubMed ID: 2471391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmid rolling circle replication: identification of the RNA polymerase-directed primer RNA and requirement for DNA polymerase I for lagging strand synthesis.
    Kramer MG; Khan SA; Espinosa M
    EMBO J; 1997 Sep; 16(18):5784-95. PubMed ID: 9312036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific frame-shift mutagenesis by the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-y1)-1-aminopyrene located in the (CG)3 sequence: effects of SOS, proofreading, and mismatch repair.
    Malia SA; Vyas RR; Basu AK
    Biochemistry; 1996 Apr; 35(14):4568-77. PubMed ID: 8605207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligonucleotide-directed double-strand break repair in plasmids of Escherichia coli: a method for site-specific mutagenesis.
    Mandecki W
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7177-81. PubMed ID: 3532104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted A --> T and G --> T mutations induced by site-specific deoxyadenosine and deoxyguanosine adducts, respectively, from the (+)-anti-diol epoxide of dibenz[a,j]anthracene in M13mp7L2.
    Min Z; Gill RD; Cortez C; Harvey RG; Loechler EL; DiGiovanni J
    Biochemistry; 1996 Apr; 35(13):4128-38. PubMed ID: 8672448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.