These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7042691)

  • 1. Rosanilins: indicator dyes for chloramphenicol-resistant enterobacteria containing chloramphenicol acetyltransferase.
    Proctor GN; Rownd RH
    J Bacteriol; 1982 Jun; 150(3):1375-82. PubMed ID: 7042691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance to chloramphenicol in Proteus mirabilis by expression of a chromosomal gene for chloramphenicol acetyltransferase.
    Charles IG; Harford S; Brookfield JF; Shaw WV
    J Bacteriol; 1985 Oct; 164(1):114-22. PubMed ID: 3900034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some properties of chloramphenicol acetyltransferase, with particular reference to the mechanism of inhibition by basic triphenylmethane dyes.
    Tanaka H; Izaki K; Takahashi H
    J Biochem; 1974 Nov; 76(5):1009-19. PubMed ID: 4616029
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of alternating current exposure on the resistivity of resting Escherichia coli B cells to crystal violet and other basic dyes.
    Shimada K; Shimahara K
    J Appl Bacteriol; 1987 Mar; 62(3):261-8. PubMed ID: 3298183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloramphenicol resistance in clinical isolates of enterobacteria: characterization of chloramphenicol acetyltransferases.
    Rivera MJ; Cabello A; Gomez-Lus R
    J Chemother; 1989 Jul; 1(4 Suppl):309-10. PubMed ID: 16312415
    [No Abstract]   [Full Text] [Related]  

  • 6. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding.
    Bennett AD; Shaw WV
    Biochem J; 1983 Oct; 215(1):29-38. PubMed ID: 6354181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol acetyltransferase may confer resistance to fusidic acid by sequestering the drug.
    Proctor GN; McKell J; Rownd RH
    J Bacteriol; 1983 Aug; 155(2):937-9. PubMed ID: 6348033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outer penetration barrier of Escherichia coli K-12: kinetics of the uptake of gentian violet by wild type and envelope mutants.
    Gustafsson P; Nordström K; Normark S
    J Bacteriol; 1973 Nov; 116(2):893-900. PubMed ID: 4583255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanisms of Proteus resistance to chloramphenicol].
    Shvidenko IG
    Antibiotiki; 1979 May; 24(5):345-8. PubMed ID: 375826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria.
    Gaffney DF; Cundliffe E; Foster TJ
    J Gen Microbiol; 1981 Jul; 125(1):113-21. PubMed ID: 7038031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature of the penetration barrier in Escherichia coli K-12: effect of macromolecular inhibition of penetrability in strains containing the envA gene.
    Normark S; Westling B
    J Bacteriol; 1971 Oct; 108(1):45-50. PubMed ID: 4941566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferable plasmid-linked chloramphenicol acetyltransferase conferring high-level resistance in Bacteroides uniformis.
    Martínez-Suárez JV; Baquero F; Reig M; Pérez-Díaz JC
    Antimicrob Agents Chemother; 1985 Jul; 28(1):113-7. PubMed ID: 3899001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis.
    Goldfarb DS; Rodriguez RL; Doi RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402.
    Sarnaik S; Kanekar P
    Appl Microbiol Biotechnol; 1999 Aug; 52(2):251-4. PubMed ID: 10499264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Esterases in serum-containing growth media counteract chloramphenicol acetyltransferase activity in vitro.
    Sohaskey CD; Barbour AG
    Antimicrob Agents Chemother; 1999 Mar; 43(3):655-60. PubMed ID: 10049283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of chloramphenicol-acetylating enzymes in various gram-negative bacilli.
    Okamoto S; Suzuki Y; Mise K; Nakaya R
    J Bacteriol; 1967 Nov; 94(5):1616-22. PubMed ID: 4964485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New chloramphenicol resistance locus in Bacillus subtilis.
    Anderson LM; Henkin TM; Chambliss GH; Bott KF
    J Bacteriol; 1984 Apr; 158(1):386-8. PubMed ID: 6425268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro antibacterial activity of fluorinated analogs of chloramphenicol and thiamphenicol.
    Syriopoulou VP; Harding AL; Goldmann DA; Smith AL
    Antimicrob Agents Chemother; 1981 Feb; 19(2):294-7. PubMed ID: 6957162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid detection of chloramphenicol resistance in Haemophilus influenzae.
    Azemun P; Stull T; Roberts M; Smith AL
    Antimicrob Agents Chemother; 1981 Aug; 20(2):168-70. PubMed ID: 6974540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of chloramphenicol resistance in staphylococci: characterization and hybridization of variants of chloramphenicol acetyltransferase.
    Sands LC; Shaw WV
    Antimicrob Agents Chemother; 1973 Feb; 3(2):299-305. PubMed ID: 4790593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.