These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7042691)

  • 21. Isolation of bacteria producing chloramphenicol acetyltransferase from soil and their characterization.
    Datta K; Mukherjee SK; Majumdar MK; Roy SK
    Microbiologica; 1982 Jul; 5(3):171-8. PubMed ID: 6956790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A comparative analysis of beta-lactamase activity in enterobacteria].
    Demikhovskaia AA; Lukach IG; Zaritskiĭ AM; Kotov AI
    Mikrobiol Zh (1978); 1984; 46(2):36-9. PubMed ID: 6401094
    [No Abstract]   [Full Text] [Related]  

  • 23. Chloramphenicol induces translation of the mRNA for a chloramphenicol-resistance gene in Bacillus subtilis.
    Duvall EJ; Lovett PS
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3939-43. PubMed ID: 3086871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of the chloramphenicol acetyltransferase gene cat-86 through the action of the ribosomal antibiotic amicetin: involvement of a Bacillus subtilis ribosomal component in cat induction.
    Duvall EJ; Mongkolsuk S; Kim UJ; Lovett PS; Henkin TM; Chambliss GH
    J Bacteriol; 1985 Feb; 161(2):665-72. PubMed ID: 3918021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleotide sequence analysis of the cat gene of Proteus mirabilis: comparison with the type I (Tn9) cat gene.
    Charles IG; Keyte JW; Shaw WV
    J Bacteriol; 1985 Oct; 164(1):123-9. PubMed ID: 3900035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and Escherichia coli.
    Gil JA; Kieser HM; Hopwood DA
    Gene; 1985; 38(1-3):1-8. PubMed ID: 3905512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. R-factor-mediated resistance to tetracycline in Proteus mirabilis.
    Franklin TJ; Rownd R
    J Bacteriol; 1973 Jul; 115(1):235-42. PubMed ID: 4268690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between chloramphenicol acetyltransferase activity and the number of resistance genes.
    Iyobe S; Kono M; Oara K; Hashimoto H; Mitsuhashi S
    Antimicrob Agents Chemother; 1974 Jan; 5(1):68-74. PubMed ID: 4599795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloramphenicol acetyltransferase of Bacteroides fragilis.
    Britz ML; Wilkinson RG
    Antimicrob Agents Chemother; 1978 Jul; 14(1):105-11. PubMed ID: 28690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Bacterial resistance to antibiotics in Québec: study with enterobacteria].
    Poty F; Gauvreau L
    Can Med Assoc J; 1969 Aug; 101(3):143-6. PubMed ID: 4308898
    [No Abstract]   [Full Text] [Related]  

  • 31. Chloramphenicol acetyltransferase: enzymology and molecular biology.
    Shaw WV
    CRC Crit Rev Biochem; 1983; 14(1):1-46. PubMed ID: 6340955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the present state of resistance to framycetin among strains of staphylococci, enterobacteriaceae and pseudomonas.
    Knothe H
    Arzneimittelforschung; 1973 Dec; 23(12):1759-60. PubMed ID: 4205906
    [No Abstract]   [Full Text] [Related]  

  • 33. Studies on the development of chloramphenicol resistance in Salmonella typhimurium.
    Wray C; Sojka WJ; Paterson AB
    Res Vet Sci; 1975 Jan; 18(1):94-9. PubMed ID: 1090986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lack of synergy of EDTA with antimicrobials in resistant enterobacteriaceae.
    Neu HC; Winshell EB
    Nature; 1970 Feb; 225(5234):763. PubMed ID: 4983894
    [No Abstract]   [Full Text] [Related]  

  • 35. Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli.
    Hadfield C; Cashmore AM; Meacock PA
    Gene; 1987; 52(1):59-70. PubMed ID: 3036659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloramphenicol-inducible gene expression in Bacillus subtilis is independent of the chloramphenicol acetyltransferase structural gene and its promoter.
    Mongkolsuk S; Ambulos NP; Lovett PS
    J Bacteriol; 1984 Oct; 160(1):1-8. PubMed ID: 6090404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli.
    Hadfield C; Cashmore AM; Meacock PA
    Gene; 1986; 45(2):149-58. PubMed ID: 3026903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-transcriptional regulation of chloramphenicol acetyl transferase.
    Byeon WH; Weisblum B
    J Bacteriol; 1984 May; 158(2):543-50. PubMed ID: 6202672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzootic occurrence of chloramphenicol-resistant Salmonella typhimurium var copenhagen in calf population.
    Sato G; Furuta Y; Kodama H; Iwao T; Oka M
    Am J Vet Res; 1975 Jun; 36(6):839-41. PubMed ID: 1096689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of deletions in the leader sequence of cat-86, a chloramphenicol-resistance gene isolated from Bacillus pumilus.
    Harwood CR; Bell DE; Winston AK
    Gene; 1987; 54(2-3):267-73. PubMed ID: 3477516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.