These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7042705)

  • 1. Identification of an active site cysteine residue in Escherichia coli pyruvate oxidase.
    Koland JG; Gennis RB
    J Biol Chem; 1982 Jun; 257(11):6023-7. PubMed ID: 7042705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of arginine in the binding of thiamin pyrophosphate to Escherichia coli pyruvate oxidase.
    Koland JG; O'Brien TA; Gennis RB
    Biochemistry; 1982 May; 21(11):2656-600. PubMed ID: 7046791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bromopyruvate as an active-site-directed inhibitor of the pyruvate dehydrogenase multienzyme complex from Escherichia coli.
    Lowe PN; Perham RN
    Biochemistry; 1984 Jan; 23(1):91-7. PubMed ID: 6362725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity of reactive cysteine residue and flavin in Escherichia coli pyruvate oxidase as estimated by fluorescence energy transfer.
    Koland JG; Gennis RB
    Biochemistry; 1982 Aug; 21(18):4438-42. PubMed ID: 6751388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the essential cysteine residue in the active site of bovine pyruvate dehydrogenase.
    Ali MS; Roche TE; Patel MS
    J Biol Chem; 1993 Oct; 268(30):22353-6. PubMed ID: 8226745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfhydryl chemistry detects three conformations of the lipid binding region of Escherichia coli pyruvate oxidase.
    Chang YY; Cronan JE
    Biochemistry; 1997 Sep; 36(39):11564-73. PubMed ID: 9305946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of different classes of nonessential sulfhydryl groups in Escherichia coli adenylosuccinate synthetase.
    Dong Q; Soans C; Liu F; Fromm HJ
    Arch Biochem Biophys; 1990 Jan; 276(1):77-84. PubMed ID: 2153366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for conformational changes in Escherichia coli porphobilinogen deaminase during stepwise pyrrole chain elongation monitored by increased reactivity of cysteine-134 to alkylation by N-ethylmaleimide.
    Warren MJ; Gul S; Aplin RT; Scott AI; Roessner CA; O'Grady P; Shoolingin-Jordan PM
    Biochemistry; 1995 Sep; 34(35):11288-95. PubMed ID: 7669787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the thiamin pyrophosphate binding site of Escherichia coli pyruvate oxidase. Evidence for an essential tryptophan residue.
    O'Brien TA; Gennis RB
    J Biol Chem; 1980 Apr; 255(8):3302-7. PubMed ID: 6988424
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis.
    Ploux O; Lei Y; Vatanen K; Liu HW
    Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sulfhydryl presumed essential is not required for catalysis by an aminoacyl-tRNA synthetase.
    Profy AT; Schimmel P
    J Biol Chem; 1986 Nov; 261(33):15474-9. PubMed ID: 3536904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphonate analogues of pyruvate. Probes of substrate binding to pyruvate oxidase and other thiamin pyrophosphate-dependent decarboxylases.
    O'Brien TA; Kluger R; Pike DC; Gennis RB
    Biochim Biophys Acta; 1980; 613(1):10-7. PubMed ID: 6990987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the flavin adenine dinucleotide binding region in Escherichia coli pyruvate oxidase.
    Mather M; Schopfer LM; Massey V; Gennis RB
    J Biol Chem; 1982 Nov; 257(21):12887-92. PubMed ID: 6752143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on Escherichia coli pyruvate dehydrogenase complex. I. Effect of bromopyruvate on the catalytic activities of the complex.
    Maldonado ME; Oh KJ; Frey PA
    J Biol Chem; 1972 May; 247(9):2711-6. PubMed ID: 4554359
    [No Abstract]   [Full Text] [Related]  

  • 15. Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation.
    Viitanen PV; Menick DR; Sarkar HK; Trumble WR; Kaback HR
    Biochemistry; 1985 Dec; 24(26):7628-35. PubMed ID: 3912006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cysteine residues 129 and 329 in Escherichia coli K1 CMP-NeuAc synthase.
    Zapata G; Roller PP; Crowley J; Vann WF
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):485-91. PubMed ID: 8240247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of the H(+)-ATPase from Kluyveromyces lactis to sulfhydryl reagents.
    Guerra G; Uribe S; Pardo JP
    Arch Biochem Biophys; 1995 Aug; 321(1):101-7. PubMed ID: 7639507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of temperature, urea and N-ethylmaleimide on pyruvate oxidase (EC 1.2.2.2) activity.
    Houghton RL
    Int J Biochem; 1979; 10(3):205-8. PubMed ID: 372032
    [No Abstract]   [Full Text] [Related]  

  • 19. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites.
    Pettigrew DW
    Biochemistry; 1986 Aug; 25(16):4711-8. PubMed ID: 3021201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plasma membrane H+-ATPase of Neurospora crassa. Properties of two reactive sulfhydryl groups.
    Davenport JW; Slayman CW
    J Biol Chem; 1988 Nov; 263(31):16007-13. PubMed ID: 2903147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.