These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7043212)

  • 21. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions.
    Lushchak V; Semchyshyn H; Mandryk S; Lushchak O
    Arch Biochem Biophys; 2005 Sep; 441(1):35-40. PubMed ID: 16084798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Saccharomyces cerevisiae catalase A in vitro.
    Ammerer G; Richter K; Hartter E; Ruis H
    Eur J Biochem; 1981 Jan; 113(2):327-31. PubMed ID: 7009156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of catalase synthesis in Saccharomyces cerevisiae by carbon catabolite repression.
    Cross HS; Ruis H
    Mol Gen Genet; 1978 Oct; 166(1):37-43. PubMed ID: 368569
    [No Abstract]   [Full Text] [Related]  

  • 24. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Toxic effect of cysteine on cells of Saccharomyces cerevisiae growing on media of various compositions].
    Damberg BE; Blumberg IaE
    Mikrobiologiia; 1983; 52(1):68-72. PubMed ID: 6341788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae.
    Grant CM; Perrone G; Dawes IW
    Biochem Biophys Res Commun; 1998 Dec; 253(3):893-8. PubMed ID: 9918826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of Saccharomyces cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient limitation.
    Bordallo J; Suárez-Rendueles P
    Yeast; 1993 Apr; 9(4):339-49. PubMed ID: 8511964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT
    Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of catalase T during oxygen adaptation of Saccharomyces cerevisiae.
    Zimniak P; Hartter E; Ruis H
    FEBS Lett; 1975 Nov; 59(2):300-4. PubMed ID: 776667
    [No Abstract]   [Full Text] [Related]  

  • 30. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae.
    Lushchak VI; Gospodaryov DV
    Cell Biol Int; 2005 Mar; 29(3):187-92. PubMed ID: 15893481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alcohol-conferred hemolysis in yeast is a consequence of increased respiratory burden.
    Shuster A; Osherov N; Leikin-Frenkel A; Rosenberg M
    FEMS Yeast Res; 2007 Sep; 7(6):879-86. PubMed ID: 17559411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Haemoprotein formation in yeast. III. The role of carbon catabolite repression in the regulation of catalase A and T formation.
    Rytka J; Sledziewski A; Lukaszkiewicz J; Biliński T
    Mol Gen Genet; 1978 Mar; 160(1):51-7. PubMed ID: 347248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of catalase-A from Saccharomyces cerevisiae.
    Maté MJ; Zamocky M; Nykyri LM; Herzog C; Alzari PM; Betzel C; Koller F; Fita I
    J Mol Biol; 1999 Feb; 286(1):135-49. PubMed ID: 9931255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalase anabolism in yeast: loss of regulation by oxygen of catalase apoprotein synthesis after mutation.
    Berte C; Sels A
    Mol Gen Genet; 1979 Apr; 172(1):45-52. PubMed ID: 377023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-free synthesis of Saccharomyces cerevisiae catalase T.
    Ammerer G; Ruis H
    FEBS Lett; 1979 Mar; 99(2):242-6. PubMed ID: 371984
    [No Abstract]   [Full Text] [Related]  

  • 36. Translational control of catalase synthesis by hemin in the yeast Saccharomyces cerevisiae.
    Hamilton B; Hofbauer R; Ruis H
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7609-13. PubMed ID: 6760200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death.
    Giannattasio S; Guaragnella N; Corte-Real M; Passarella S; Marra E
    Gene; 2005 Jul; 354():93-8. PubMed ID: 15894436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Role of Cu, Zn- and Mn-containing superoxide dismutases during the yeast Saccharomyces cerevisiae growing on ethanol and glycerol].
    Mandryk SIa; Lushchak OV; Semchyshyn HM; Lushchak VI
    Mikrobiol Z; 2007; 69(2):35-42. PubMed ID: 17494333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observations on the nature of catalase induction in Saccharomyces cerevisiae.
    Sulebele GA; Rege DV
    Enzymologia; 1967 Dec; 33(6):345-53. PubMed ID: 5621990
    [No Abstract]   [Full Text] [Related]  

  • 40. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants.
    Amari F; Fettouche A; Samra MA; Kefalas P; Kampranis SC; Makris AM
    J Agric Food Chem; 2008 Dec; 56(24):11740-51. PubMed ID: 19049288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.