BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7043400)

  • 1. Adenine-guanine base pairing ribosomal RNA.
    Traub W; Sussman JL
    Nucleic Acids Res; 1982 Apr; 10(8):2701-8. PubMed ID: 7043400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there a special function for U.G basepairs in ribosomal RNA?
    van Knippenberg PH; Formenoy LJ; Heus HA
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):14-7. PubMed ID: 2207138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent.
    Heus HA; Wijmenga SS; Hoppe H; Hilbers CW
    J Mol Biol; 1997 Aug; 271(1):147-58. PubMed ID: 9300061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and sequence-dependent conformation of the A.G mispaired oligonucleotide d(CGCAAGCTGGCG).
    Webster GD; Sanderson MR; Skelly JV; Neidle S; Swann PF; Li BF; Tickle IJ
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6693-7. PubMed ID: 2395870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G.U base pairing motifs in ribosomal RNA.
    Gautheret D; Konings D; Gutell RR
    RNA; 1995 Oct; 1(8):807-14. PubMed ID: 7493326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A curved RNA helix incorporating an internal loop with G.A and A.A non-Watson-Crick base pairing.
    Baeyens KJ; De Bondt HL; Pardi A; Holbrook SR
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12851-5. PubMed ID: 8917508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The secondary structure of E. coli ribosomes and ribosomal RNA's: a spectrophotometric approach.
    Araco A; Belli M; Giorgi C; Onori G
    Nucleic Acids Res; 1975 Mar; 2(3):373-81. PubMed ID: 1093140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and thermodynamic studies on the adenine.guanine mismatch in B-DNA.
    Leonard GA; Booth ED; Brown T
    Nucleic Acids Res; 1990 Oct; 18(19):5617-23. PubMed ID: 2216754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy.
    Kan LS; Chandrasegaran S; Pulford SM; Miller PS
    Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4263-5. PubMed ID: 6576336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA tertiary structure of the HIV RRE domain II containing non-Watson-Crick base pairs GG and GA: molecular modeling studies.
    Le SY; Pattabiraman N; Maizel JV
    Nucleic Acids Res; 1994 Sep; 22(19):3966-76. PubMed ID: 7937119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of DNA and RNA containing AG base pairs by NMR.
    Katahira M; Sato H; Sugiyama T; Kanagawa M; Mishima K; Uesugi S
    Nucleic Acids Symp Ser; 1993; (29):203-4. PubMed ID: 7504245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution proton magnetic resonance studies of the 3'-terminal colicin fragment of 16 S ribosomal RNA from Escherichia coli. Assignment of iminoproton resonances by nuclear Overhauser effect experiments and the influence of adenine dimethylation on the hairpin conformation.
    Heus HA; van Kimmenade JM; van Knippenberg PH; Haasnoot CA; de Bruin SH; Hilbers CW
    J Mol Biol; 1983 Nov; 170(4):939-56. PubMed ID: 6315954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of sheared G:A base pairs in an RNA duplex modelled after ribozymes, as revealed by NMR.
    Katahira M; Kanagawa M; Sato H; Uesugi S; Fujii S; Kohno T; Maeda T
    Nucleic Acids Res; 1994 Jul; 22(14):2752-9. PubMed ID: 7519767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative base pairing between 5'- and 3'-terminal sequences of small subunit RNA may provide the basis of a conformational switch of the small ribosomal subunit.
    Kössel H; Hoch B; Zeltz P
    Nucleic Acids Res; 1990 Jul; 18(14):4083-8. PubMed ID: 2198532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on ribosomal ribonucleic acid from yeast. III. Secondary structure of 18 and 26S yeast ribosomal RNA's and their complex: circular dichroism and infrared analyses.
    Yanagi K; Katsura T; Iso K
    J Biochem; 1975 Sep; 78(3):599-604. PubMed ID: 773924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small angle x-ray scattering study of a fragment derived from E. coli 5S RNA.
    Leontis NB; Moore PB
    Nucleic Acids Res; 1984 Feb; 12(4):2193-203. PubMed ID: 6366745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metastable secondary structures in ribosomal RNA molecular hysteresis in the acid-base titration of Escherichia coli ribosomal RNA.
    Revzin A; Neumann E; Katchalsky A
    J Mol Biol; 1973 Sep; 79(1):95-114. PubMed ID: 4200930
    [No Abstract]   [Full Text] [Related]  

  • 20. Extensions of the known sequences at the 3' and 5' ends of 23S ribosomal RNA from Escherichia coli, possible base pairing between these 23S RNA regions and 16S ribosomal RNA.
    Branlant C; Widada JS; Krol A; Ebel JP
    Nucleic Acids Res; 1976 Jul; 3(7):1671-87. PubMed ID: 823528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.