BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7043400)

  • 21. X-ray crystallographic analysis of the structural basis for the interaction of pokeweed antiviral protein with guanine residues of ribosomal RNA.
    Kurinov IV; Rajamohan F; Venkatachalam TK; Uckun FM
    Protein Sci; 1999 Nov; 8(11):2399-405. PubMed ID: 10595542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex.
    Li Y; Zon G; Wilson WD
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):26-30. PubMed ID: 1986374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The conformation of a conserved stem-loop structure in ribosomal RNA.
    van Knippenberg PH; Heus HA
    J Biomol Struct Dyn; 1983 Oct; 1(2):371-81. PubMed ID: 6400879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inosine.adenine base pairs in a B-DNA duplex.
    Corfield PW; Hunter WN; Brown T; Robinson P; Kennard O
    Nucleic Acids Res; 1987 Oct; 15(19):7935-49. PubMed ID: 3671069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Noncanonical Base Pairing on RNA Folding: Structural Context and Spatial Arrangements of G·A Pairs.
    Olson WK; Li S; Kaukonen T; Colasanti AV; Xin Y; Lu XJ
    Biochemistry; 2019 May; 58(20):2474-2487. PubMed ID: 31008589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of an oligonucleotide duplex containing G.G base pairs: influence of mispairing on DNA backbone conformation.
    Skelly JV; Edwards KJ; Jenkins TC; Neidle S
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):804-8. PubMed ID: 8430089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of purine-purine mispairs during misincorporation and extension by Escherichia coli DNA polymerase I.
    Kretulskie AM; Spratt TE
    Biochemistry; 2006 Mar; 45(11):3740-6. PubMed ID: 16533057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The tertiary folding of Escherichia coli 16S RNA, as studied by in situ intra-RNA cross-linking of 30S ribosomal subunits with bis-(2-chloroethyl)-methylamine.
    Atmadja J; Stiege W; Zobawa M; Greuer B; Osswald M; Brimacombe R
    Nucleic Acids Res; 1986 Jan; 14(2):659-73. PubMed ID: 2418415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the physical and optical properties of Escherichia coli and sea urchin 5 s ribosomal RNA's.
    Bellemare G; Cedergren RJ; Cousineau GH
    J Mol Biol; 1972 Jul; 68(3):445-54. PubMed ID: 4560849
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of 1-methyladenine on double-helical DNA structures.
    Yang H; Zhan Y; Fenn D; Chi LM; Lam SL
    FEBS Lett; 2008 May; 582(11):1629-33. PubMed ID: 18435925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homology of the 3' terminal sequences of the 18S rRNA of Bombyx mori and the 16S rRNA of Escherchia coli.
    Samols DR; Hagenbuchle O; Gage LP
    Nucleic Acids Res; 1979 Nov; 7(5):1109-19. PubMed ID: 390496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Base-pairing of 23 S rRNA ends is essential for ribosomal large subunit assembly.
    Liiv A; Remme J
    J Mol Biol; 1998 Feb; 276(3):537-45. PubMed ID: 9551095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G-ribo: a new structural motif in ribosomal RNA.
    Steinberg SV; Boutorine YI
    RNA; 2007 Apr; 13(4):549-54. PubMed ID: 17283211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular structure of a DNA-triostin A complex.
    Wang AH; Ughetto G; Quigley GJ; Hakoshima T; van der Marel GA; van Boom JH; Rich A
    Science; 1984 Sep; 225(4667):1115-21. PubMed ID: 6474168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Refined secondary structure models for the 16S and 23S ribosomal RNA of Escherichia coli.
    Maly P; Brimacombe R
    Nucleic Acids Res; 1983 Nov; 11(21):7263-86. PubMed ID: 6359058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution structure of an RNA internal loop with three consecutive sheared GA pairs.
    Chen G; Znosko BM; Kennedy SD; Krugh TR; Turner DH
    Biochemistry; 2005 Mar; 44(8):2845-56. PubMed ID: 15723528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of nucleic-acid base-pairs with acidic side chains of protein. Crystal structures of adenine: 1-(2-carboxyethyl)uracil (1:1) complex and 1-methylcytosine: 9-(2-carboxyethyl)guanine (1:1) complex.
    Takenaka A; Fujita S; Sasada Y
    Nucleic Acids Symp Ser; 1982; (11):281-4. PubMed ID: 7183967
    [No Abstract]   [Full Text] [Related]  

  • 38. A four-base paired genetic helix with expanded size.
    Liu H; Gao J; Lynch SR; Saito YD; Maynard L; Kool ET
    Science; 2003 Oct; 302(5646):868-71. PubMed ID: 14593180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural features and hydration of d(C-G-C-G-A-A-T-T-A-G-C-G); a double helix containing two G.A mispairs.
    Hunter WN; Brown T; Kennard O
    J Biomol Struct Dyn; 1986 Oct; 4(2):173-91. PubMed ID: 3271438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs.
    Halder A; Bhattacharya S; Datta A; Bhattacharyya D; Mitra A
    Phys Chem Chem Phys; 2015 Oct; 17(39):26249-63. PubMed ID: 26382322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.