These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7043400)

  • 61. Methoxyamine attack on cytosine produces ambivalent base pairing properties of the modified base.
    Gdaniec Z; Sowers LC; Fazakerley GV
    Acta Biochim Pol; 1996; 43(1):95-105. PubMed ID: 8790715
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Demonstration of the GC-rich common arm in yeast ribosomal 5.8S RNA via 500-MHz proton nuclear magnetic resonance and Overhauser enhancements.
    Lee KM; Marshall AG
    Biochemistry; 1986 Dec; 25(25):8245-52. PubMed ID: 3545290
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ned Seeman and the prediction of amino acid-basepair motifs mediating protein-nucleic acid recognition.
    Egli M; Zhang S
    Biophys J; 2022 Dec; 121(24):4777-4787. PubMed ID: 35711143
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A minimal ribosomal RNA: sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae.
    de la Cruz VF; Lake JA; Simpson AM; Simpson L
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1401-5. PubMed ID: 3856267
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD(T) levels.
    Rejnek J; Hobza P
    J Phys Chem B; 2007 Jan; 111(3):641-5. PubMed ID: 17228922
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Modification of the guanine in the invariant sequence 5' CCG44AAC3' of the Escherichia coli 5 S RNA in solution by kethoxal.
    Larrinúa I; Delihas N
    FEBS Lett; 1979 Dec; 108(1):181-4. PubMed ID: 118053
    [No Abstract]   [Full Text] [Related]  

  • 67. An experimentally-derived model for the secondary structure of the 16S ribosomal RNA from Escherichia coli.
    Glotz C; Brimacombe R
    Nucleic Acids Res; 1980 Jun; 8(11):2377-95. PubMed ID: 6160459
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sequences of the 5S rRNAs of Azotobacter vinelandii, Pseudomonas aeruginosa and Pseudomonas fluorescens with some notes on 5S RNA secondary structure.
    Dams E; Vandenberghe A; De Wachter R
    Nucleic Acids Res; 1983 Mar; 11(5):1245-52. PubMed ID: 6402760
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A reconsideration of the possibility of the specific pairing of base pairs.
    McGavin S
    J Theor Biol; 1979 Mar; 77(1):83-99. PubMed ID: 449371
    [No Abstract]   [Full Text] [Related]  

  • 70. Determination of base pairing in Escherichia coli and Bacillus stearothermophilus 5S RNAs by infrared spectroscopy.
    Appel B; Erdmann VA; Stulz J; Ackerman T
    Nucleic Acids Res; 1979 Oct; 7(4):1043-57. PubMed ID: 388350
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The extent of base pairing in 5 s RNA. Yeast 5 s RNA.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):741-9. PubMed ID: 4573846
    [No Abstract]   [Full Text] [Related]  

  • 72. Variable base pairing in a helix of eubacterial 5 S ribosomal RNA points to the existence of a conformational switch.
    Van den Eynde H; De Wachter R
    FEBS Lett; 1987 Jun; 217(2):191-6. PubMed ID: 2439375
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.
    Zuker M; Stiegler P
    Nucleic Acids Res; 1981 Jan; 9(1):133-48. PubMed ID: 6163133
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural analysis of the A and B conformers of Escherichia coli 5 S ribosomal RNA by infrared spectroscopy.
    Böhm S; Fabian H; Venyaminov SYu ; Matveev SV; Lucius H; Welfle H; Filimonov VV
    FEBS Lett; 1981 Sep; 132(2):357-61. PubMed ID: 6170531
    [No Abstract]   [Full Text] [Related]  

  • 75. The hydrodynamic shape, conformation, and molecular model of Escherichia coli ribosomal 5 S RNA.
    Fox JW; Wong KP
    J Biol Chem; 1979 Oct; 254(20):10139-44. PubMed ID: 385597
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Conformation differences in bacterial ribosomal RNA's in non-denaturing conditions.
    Reff ME; Stanbridge EJ
    Nature; 1976 Apr; 260(5553):724-6. PubMed ID: 817211
    [No Abstract]   [Full Text] [Related]  

  • 77. Nuclear magnetic resonance of the base-pairing structure of the native and denatured conformers of Escherichia coli transfer RNATrp.
    Jones CR; Kearns DR
    J Mol Biol; 1976 Jun; 103(4):747-64. PubMed ID: 781285
    [No Abstract]   [Full Text] [Related]  

  • 78. Computer method for predicting the secondary structure of single-stranded RNA.
    Studnicka GM; Rahn GM; Cummings IW; Salser WA
    Nucleic Acids Res; 1978 Sep; 5(9):3365-87. PubMed ID: 100768
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differential breakdown of phylogenetically diverse ribosomal RNA's inserted via liposomes into mammalian cells.
    Lavelle D; Ostro MJ; Giacomoni D
    Science; 1982 Jul; 217(4554):59-61. PubMed ID: 6178157
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sequence-specific recognition of double helical nucleic acids by proteins.
    Seeman NC; Rosenberg JM; Rich A
    Proc Natl Acad Sci U S A; 1976 Mar; 73(3):804-8. PubMed ID: 1062791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.