BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7044185)

  • 1. The role of conducting airways in gas exchange during high-frequency ventilation--a clinical and theoretical analysis.
    Eriksson I
    Anesth Analg; 1982 Jun; 61(6):483-9. PubMed ID: 7044185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of high-frequency positive-pressure ventilation (HFPPV) and general anesthesia on intrapulmonary gas distribution in patients undergoing diagnostic bronchoscopy.
    Eriksson I; Sjøstrand U
    Anesth Analg; 1980 Aug; 59(8):585-93. PubMed ID: 6773438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between physiologic deadspace/tidal volume ratio and gas exchange in infants with acute bronchiolitis on invasive mechanical ventilation.
    Almeida-Junior AA; da Silva MT; Almeida CC; Ribeiro JD
    Pediatr Crit Care Med; 2007 Jul; 8(4):372-7. PubMed ID: 17545938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Phylogeny of gas exchange systems].
    Jürgens KD; Gros G
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2002 Apr; 37(4):185-98. PubMed ID: 11967744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tidal volume change and gas mixing in the lung.
    Damato S; Cumming G
    Respiration; 1989; 56(3-4):173-81. PubMed ID: 2635347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Setting the frequency-tidal volume pattern.
    MacIntyre NR
    Respir Care; 2002 Mar; 47(3):266-74; discussion 274-8. PubMed ID: 11874606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury.
    Beydon L; Uttman L; Rawal R; Jonson B
    Intensive Care Med; 2002 Sep; 28(9):1239-45. PubMed ID: 12209271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of the multiple-breath nitrogen washout as a pulmonary function test in horses.
    Gallivan GJ; Viel L; McDonell WN
    Can J Vet Res; 1990 Jan; 54(1):99-105. PubMed ID: 2306677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of alveolar ventilation, oxygenation, pressure support, and respiratory system resistance in response to noninvasive versus conventional mechanical ventilation in foals.
    Hoffman AM; Kupcinskas RL; Paradis MR
    Am J Vet Res; 1997 Dec; 58(12):1463-7. PubMed ID: 9401700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of breathing during cortical substitution of the spontaneous automatic respiratory rhythm.
    Haouzi P; Chenuel B; Whipp BJ
    Respir Physiol Neurobiol; 2007 Nov; 159(2):211-8. PubMed ID: 17869591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologic evidence for the efficacy of positive expiratory pressure as an airway clearance technique in patients with cystic fibrosis.
    Darbee JC; Ohtake PJ; Grant BJ; Cerny FJ
    Phys Ther; 2004 Jun; 84(6):524-37. PubMed ID: 15161418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral airway involvement in CF and asthma compared by inert gas washout.
    Gustafsson PM
    Pediatr Pulmonol; 2007 Feb; 42(2):168-76. PubMed ID: 17186546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tidal volume and positive end-expiratory pressure on inspiratory gas distribution and gas exchange during mechanical ventilation in horses positioned in lateral recumbency.
    Moens Y; Lagerweij E; Gootjes P; Poortman J
    Am J Vet Res; 1998 Mar; 59(3):307-12. PubMed ID: 9522950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of amplified spontaneous pattern ventilation in postoperative patients. Comparison with pressure support].
    Sánchez de Merás AM; Páiz P; Perpiñán I; García Polit J; Soliveres J; Aguilar G; Maruenda A; Belda FJ
    Rev Esp Anestesiol Reanim; 1999 May; 46(5):197-204. PubMed ID: 10379186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential contribution of dead space ventilation and low arterial pCO2 to exercise hyperpnea in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.
    Wensel R; Georgiadou P; Francis DP; Bayne S; Scott AC; Genth-Zotz S; Anker SD; Coats AJ; Piepoli MF
    Am J Cardiol; 2004 Feb; 93(3):318-23. PubMed ID: 14759381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of Pendelluft and dead space on nitrogen clearance: mathematical and experimental models and their application to the study of the distribution of ventilation.
    Safonoff I; Emmanuel GE
    J Clin Invest; 1967 Oct; 46(10):1683-93. PubMed ID: 6061743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nocturnal non-invasive positive pressure ventilation: physiological effects on spontaneous breathing.
    Windisch W; Dreher M; Storre JH; Sorichter S
    Respir Physiol Neurobiol; 2006 Feb; 150(2-3):251-60. PubMed ID: 15990366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Respiration of multi-injured patients with He-O2 and N2-O2 mixtures. I. Ventilatory effects and pulmonary gas exchange].
    Fritz KW; Tabbert M; Mottner J; Patschke D
    Anaesthesist; 1982 Jul; 31(7):323-9. PubMed ID: 7125175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.
    Enekvist BJ; Luttropp HH; Johansson A
    J Clin Anesth; 2008 May; 20(3):170-4. PubMed ID: 18502358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.