These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7044216)

  • 21. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium.
    Weigel N; Waygood EB; Kukuruzinska MA; Nakazawa A; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14461-9. PubMed ID: 6754728
    [No Abstract]   [Full Text] [Related]  

  • 22. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation.
    Postma PW; Stock JB
    J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rate constants of sugar transport through two LamB mutants of Escherichia coli: comparison with wild-type maltoporin and LamB of Salmonella typhimurium.
    Jordy M; Andersen C; Schülein K; Ferenci T; Benz R
    J Mol Biol; 1996 Jun; 259(4):666-78. PubMed ID: 8683573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Properties of mutants of bacteria belonging to the genus Erwinia devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system].
    Datsenko KA; Evtushenko AN; Sergeev KV; Dobrynina OIu; Bol'shakova TN
    Genetika; 2002 Jul; 38(7):904-10. PubMed ID: 12174582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic evidence for glucitol-specific enzyme III, an essential phosphocarrier protein of the Salmonella typhimurium glucitol phosphotransferase system.
    Sarno MV; Tenn LG; Desai A; Chin AM; Grenier FC; Saier MH
    J Bacteriol; 1984 Mar; 157(3):953-5. PubMed ID: 6365895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion.
    Mazé A; Glatter T; Bumann D
    Cell Rep; 2014 Jun; 7(5):1426-1433. PubMed ID: 24835993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current studies on the bacterial phosphotransferase system in the Saier laboratory (La Jolla, California, summer, 1988).
    Saier MH
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):183-92. PubMed ID: 2699248
    [No Abstract]   [Full Text] [Related]  

  • 28. Sugar transport by the bacterial phosphotransferase system. Radioactive and electron paramagnetic resonance labeling of the Salmonella typhimurium phosphocarrier protein (HPr) at the NH2-terminal methionine.
    Grill H; Weigel N; Gaffney BJ; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14510-7. PubMed ID: 6292226
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of enzyme I of the bacterial phosphoenolpyruvate : sugar phosphotransferase system (PTS) on virulence in a murine model.
    Kok M; Bron G; Erni B; Mukhija S
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2645-2652. PubMed ID: 12949188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bacterial phosphoenolpyruvate: sugar phosphotransferase system.
    Postma PW; Roseman S
    Biochim Biophys Acta; 1976 Dec; 457(3-4):213-57. PubMed ID: 187249
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation of carbohydrate transport activities in Salmonella typhimurium: use of the phosphoglycerate transport system to energize solute uptake.
    Saier MH; Feucht BU
    J Bacteriol; 1980 Feb; 141(2):611-7. PubMed ID: 6988388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport.
    Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983
    [No Abstract]   [Full Text] [Related]  

  • 33. Genetic expression of enzyme I activity of the phosphoenolpyruvate:sugar phosphotransferase system in ptsHI deletion strains of Salmonella typhimurium.
    Chin AM; Sutrina S; Feldheim DA; Saier MH
    J Bacteriol; 1987 Feb; 169(2):894-6. PubMed ID: 3542977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Role of the cytoplasmic component of the fructose transport system in the physiology of the bacterial cell].
    Gershanovich VN; Dobrynina OIu; Bol'shakova TN
    Vestn Akad Med Nauk SSSR; 1985; (10):20-4. PubMed ID: 3936301
    [No Abstract]   [Full Text] [Related]  

  • 35. A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans.
    Webb AJ; Homer KA; Hosie AH
    J Bacteriol; 2007 Apr; 189(8):3322-7. PubMed ID: 17277067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-vectorial phosphorylation by the bacterial PEP-dependent phosphotransferase system is an artifact of spheroplast and membrane vesicle preparation procedures.
    Robillard GT; Lageveen RG
    FEBS Lett; 1982 Oct; 147(2):143-8. PubMed ID: 6756955
    [No Abstract]   [Full Text] [Related]  

  • 37. Evidence against direct involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling.
    Tribhuwan RC; Johnson MS; Taylor BL
    J Bacteriol; 1986 Nov; 168(2):624-30. PubMed ID: 3023283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of sugar uptake and efflux in gram-positive bacteria.
    Reizer J
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):149-56. PubMed ID: 2699246
    [No Abstract]   [Full Text] [Related]  

  • 39. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria.
    Postma PW; Lengeler JW
    Microbiol Rev; 1985 Sep; 49(3):232-69. PubMed ID: 3900671
    [No Abstract]   [Full Text] [Related]  

  • 40. Genomic analysis of the phosphotransferase system in Clostridium botulinum.
    Mitchell WJ; Tewatia P; Meaden PG
    J Mol Microbiol Biotechnol; 2007; 12(1-2):33-42. PubMed ID: 17183209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.