BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7044413)

  • 1. Formamide-induced dissociation and inactivation of Escherichia coli alkaline phosphatase. Metal-dependent reassociation and restoration of activity from isolated subunits.
    Falk MC; Bethune JL; Vallee BL
    Biochemistry; 1982 Mar; 21(7):1471-8. PubMed ID: 7044413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of antibodies to various molecular forms of a mutationally altered Escherichia coli alkaline phosphatase on its activation by zinc.
    Pages JM; Varenne S; Lazdunski C
    Eur J Biochem; 1976 Aug; 67(1):145-53. PubMed ID: 786617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase.
    Anderson RA; Kennedy FS; Vallee BL
    Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of zinc and other metal ions on the stability and activity of Escherichia coli alkaline phosphatase.
    Trotman CN; Greenwood C
    Biochem J; 1971 Aug; 124(1):25-30. PubMed ID: 4942389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase.
    McCracken S; Meighen EA
    J Biol Chem; 1981 Apr; 256(8):3945-50. PubMed ID: 7012146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid Escherichia coli alkaline phosphatase formed on proteolysis.
    Olafsdottir S; Chlebowski JF
    J Biol Chem; 1989 Mar; 264(8):4529-35. PubMed ID: 2494174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of the quaternary structure of reversibly immobilized alkaline phosphatase derivatives.
    McCracken S; Meighen E
    Can J Biochem; 1979 Jun; 57(6):834-42. PubMed ID: 383239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypsin-modified alkaline phosphatase. Formation of apoenzyme monomer and hybrid dimer.
    Roberts CH; Chlebowski JF
    J Biol Chem; 1985 Jun; 260(12):7557-61. PubMed ID: 3889000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of metal ions to apoalkaline phosphatase from E. coli: effect of ionic radius.
    LeVine H; Tsong TY; Hollis DP
    Life Sci; 1976 Sep; 19(6):859-65. PubMed ID: 787713
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of magnesium on the properties of zinc alkaline phosphatase.
    Bosron WF; Anderson RA; Falk MC; Kennedy FS; Vallee BL
    Biochemistry; 1977 Feb; 16(4):610-4. PubMed ID: 13822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase.
    Szajn H; Csopak H
    Biochim Biophys Acta; 1977 Jan; 480(1):143-53. PubMed ID: 12823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of magnesium in Escherichia coli alkaline phosphatase.
    Anderson RA; Bosron WF; Kennedy FS; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective cobalt oxidation as a means to differentiate metal-binding sites of cobalt alkaline phosphatase.
    Anderson RA; Vallee BL
    Biochemistry; 1977 Oct; 16(20):4388-93. PubMed ID: 199235
    [No Abstract]   [Full Text] [Related]  

  • 17. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity.
    Wojciechowski CL; Cardia JP; Kantrowitz ER
    Protein Sci; 2002 Apr; 11(4):903-11. PubMed ID: 11910033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase.
    Chlebowski JF; Coleman JE
    J Biol Chem; 1974 Nov; 249(22):7192-202. PubMed ID: 4612034
    [No Abstract]   [Full Text] [Related]  

  • 20. Distinct structure and activity recoveries reveal differences in metal binding between mammalian and Escherichia coli alkaline phosphatases.
    Zhang L; Buchet R; Azzar G
    Biochem J; 2005 Dec; 392(Pt 2):407-15. PubMed ID: 16086666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.