These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7044413)

  • 1. Formamide-induced dissociation and inactivation of Escherichia coli alkaline phosphatase. Metal-dependent reassociation and restoration of activity from isolated subunits.
    Falk MC; Bethune JL; Vallee BL
    Biochemistry; 1982 Mar; 21(7):1471-8. PubMed ID: 7044413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of antibodies to various molecular forms of a mutationally altered Escherichia coli alkaline phosphatase on its activation by zinc.
    Pages JM; Varenne S; Lazdunski C
    Eur J Biochem; 1976 Aug; 67(1):145-53. PubMed ID: 786617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase.
    Anderson RA; Kennedy FS; Vallee BL
    Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of zinc and other metal ions on the stability and activity of Escherichia coli alkaline phosphatase.
    Trotman CN; Greenwood C
    Biochem J; 1971 Aug; 124(1):25-30. PubMed ID: 4942389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase.
    McCracken S; Meighen EA
    J Biol Chem; 1981 Apr; 256(8):3945-50. PubMed ID: 7012146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid Escherichia coli alkaline phosphatase formed on proteolysis.
    Olafsdottir S; Chlebowski JF
    J Biol Chem; 1989 Mar; 264(8):4529-35. PubMed ID: 2494174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of the quaternary structure of reversibly immobilized alkaline phosphatase derivatives.
    McCracken S; Meighen E
    Can J Biochem; 1979 Jun; 57(6):834-42. PubMed ID: 383239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypsin-modified alkaline phosphatase. Formation of apoenzyme monomer and hybrid dimer.
    Roberts CH; Chlebowski JF
    J Biol Chem; 1985 Jun; 260(12):7557-61. PubMed ID: 3889000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of metal ions to apoalkaline phosphatase from E. coli: effect of ionic radius.
    LeVine H; Tsong TY; Hollis DP
    Life Sci; 1976 Sep; 19(6):859-65. PubMed ID: 787713
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of magnesium on the properties of zinc alkaline phosphatase.
    Bosron WF; Anderson RA; Falk MC; Kennedy FS; Vallee BL
    Biochemistry; 1977 Feb; 16(4):610-4. PubMed ID: 13822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase.
    Szajn H; Csopak H
    Biochim Biophys Acta; 1977 Jan; 480(1):143-53. PubMed ID: 12823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of magnesium in Escherichia coli alkaline phosphatase.
    Anderson RA; Bosron WF; Kennedy FS; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective cobalt oxidation as a means to differentiate metal-binding sites of cobalt alkaline phosphatase.
    Anderson RA; Vallee BL
    Biochemistry; 1977 Oct; 16(20):4388-93. PubMed ID: 199235
    [No Abstract]   [Full Text] [Related]  

  • 17. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity.
    Wojciechowski CL; Cardia JP; Kantrowitz ER
    Protein Sci; 2002 Apr; 11(4):903-11. PubMed ID: 11910033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase.
    Chlebowski JF; Coleman JE
    J Biol Chem; 1974 Nov; 249(22):7192-202. PubMed ID: 4612034
    [No Abstract]   [Full Text] [Related]  

  • 20. Distinct structure and activity recoveries reveal differences in metal binding between mammalian and Escherichia coli alkaline phosphatases.
    Zhang L; Buchet R; Azzar G
    Biochem J; 2005 Dec; 392(Pt 2):407-15. PubMed ID: 16086666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.