These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7044443)

  • 1. [Biological activity of allogeneic embryonic bone marrow cells].
    Chobanu PI
    Biull Eksp Biol Med; 1982 Apr; 93(4):95-8. PubMed ID: 7044443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The influence of transplanted culture of bone marrow stromal cells on reparative osteohistogenesis in parietal bone defect].
    Deev RV; Tsupkina NV; Gololobov VG; Nikolaenko NS; Ivanov DE; Dulaev AK; Pinaev GP
    Tsitologiia; 2008; 50(4):293-301. PubMed ID: 18664111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Peritoneal exudate cells as a source of competent material for the induction of the ectopic osteogenesis of minced bone tissue in adult rabbits].
    Kantorova VI
    Dokl Akad Nauk SSSR; 1981; 256(3):699-703. PubMed ID: 7215145
    [No Abstract]   [Full Text] [Related]  

  • 4. [Role of the bone marrow in reparative osteogenesis].
    Danis A
    Bull Acad R Med Belg; 1974; 129(2):173-98. PubMed ID: 4620146
    [No Abstract]   [Full Text] [Related]  

  • 5. [Stromal tissue differentiation in bone marrow organ cultures].
    Kuznetsov SA; Luriia EA; Genkina EN
    Probl Gematol Pereliv Krovi; 1978; 23(11):42-8. PubMed ID: 714893
    [No Abstract]   [Full Text] [Related]  

  • 6. [Bone marrow hematopoietic function and its relation to osteogenesis activity during reparative regeneration in leg lengthening in the dog].
    Ilizarov GA; Palienko LA; Shreĭner AA
    Ontogenez; 1984; 15(2):146-52. PubMed ID: 6717905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Osteogenesis in transplants of bone marrow cells].
    Fridenshteĭn AIa; Piatetskiĭ-Shapiro II; Petrakova KV
    Arkh Anat Gistol Embriol; 1969 Mar; 56(3):3-11. PubMed ID: 4903779
    [No Abstract]   [Full Text] [Related]  

  • 8. Clinical implications of cell function in osteogenesis. A reappraisal of bone-graft surgery.
    Nade S
    Ann R Coll Surg Engl; 1979 May; 61(3):189-94. PubMed ID: 384883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor.
    Yoshioka T; Mishima H; Ohyabu Y; Sakai S; Akaogi H; Ishii T; Kojima H; Tanaka J; Ochiai N; Uemura T
    J Orthop Res; 2007 Oct; 25(10):1291-8. PubMed ID: 17549704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Intensity of ultraviolet fluorescence of cells of irradiated and intact bone marrow cultures, transplanted in diffusion chambers].
    Galustian ASh; Safronova VG
    Tsitologiia; 1973 Apr; 15(4):456-61. PubMed ID: 4587338
    [No Abstract]   [Full Text] [Related]  

  • 11. Bone induction studies using an improved diffusion chamber.
    Upton LG
    J Oral Surg; 1972 Jul; 30(7):486-90. PubMed ID: 4555338
    [No Abstract]   [Full Text] [Related]  

  • 12. An evaluation of the osteogenic potential of marrow.
    Bierly JA; Sottosanti JS; Costley JM; Cherrick HM
    J Periodontol; 1975 May; 46(5):277-83. PubMed ID: 1094100
    [No Abstract]   [Full Text] [Related]  

  • 13. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo.
    Ashton BA; Allen TD; Howlett CR; Eaglesom CC; Hattori A; Owen M
    Clin Orthop Relat Res; 1980 Sep; (151):294-307. PubMed ID: 7418319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Participation of transfused bone marrow cells in reparative osteohistogenesis].
    Deev RV; Tsupkina NV; Serikov VB; Gololobov VG; Pinaev GP
    Tsitologiia; 2005; 47(9):755-9. PubMed ID: 16706204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemopoiesis in demineralized bone allografts.
    Brockbank KG; Ogawa M; Spector M
    Exp Hematol; 1980 Jul; 8(6):763-9. PubMed ID: 7202580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bone inductive potential of a composite bone allograft-marrow autograft in rabbits.
    Simmons DJ; Ellsasser JC; Cummins H; Lesker P
    Clin Orthop Relat Res; 1973; (97):237-47. PubMed ID: 4590223
    [No Abstract]   [Full Text] [Related]  

  • 17. Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor.
    Ishida T; Inaba M; Hisha H; Sugiura K; Adachi Y; Nagata N; Ogawa R; Good RA; Ikehara S
    J Immunol; 1994 Mar; 152(6):3119-27. PubMed ID: 8144907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The clonogenic properties of the bone marrow in dogs during distraction osteogenesis].
    Bazarnyĭ VV; Osipenko AV
    Biull Eksp Biol Med; 1993 Sep; 116(9):321-3. PubMed ID: 8118015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cadmium on osteogenesis within diffusion chambers by bone marrow cells: biochemical evidence of decreased bone formation capacity.
    Dohi Y; Sugimoto K; Yoshikawa T; Ohgushi H; Katsuda T; Tabata S; Moriyama T
    Toxicol Appl Pharmacol; 1993 Jun; 120(2):274-80. PubMed ID: 8511797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Use of UV-irradiated autologous bone marrow in the treatment of bone defects in children].
    Prokopova LV; Nikolaeva NG
    Ortop Travmatol Protez; 1990 Sep; (9):25-8. PubMed ID: 2095511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.