These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7044677)

  • 21. The role of intracellular buffers in acid-base disturbances: mathematical modelling.
    Burton RF
    Respir Physiol; 1980 Jan; 39(1):45-61. PubMed ID: 7361019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative analysis of modelled extracellular potentials.
    Fleisher SM
    Med Biol Eng Comput; 1984 Sep; 22(5):440-7. PubMed ID: 6482532
    [No Abstract]   [Full Text] [Related]  

  • 23. Frequency domain modeling of volume conduction of single muscle fiber action potentials.
    Albers BA; Rutten WL; Wallinga-De Jonge W; Boom HB
    IEEE Trans Biomed Eng; 1988 May; 35(5):328-32. PubMed ID: 3397080
    [No Abstract]   [Full Text] [Related]  

  • 24. Nonlinear relationship between averaged electromyogram potential and muscle tension in normal subjects.
    Zuniga EN; Simons EG
    Arch Phys Med Rehabil; 1969 Nov; 50(11):613-20. PubMed ID: 5360322
    [No Abstract]   [Full Text] [Related]  

  • 25. Modelling of the extracellular potentials generated by curved fibres in a volume conductor.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1980; 20(1):27-40. PubMed ID: 7389648
    [No Abstract]   [Full Text] [Related]  

  • 26. Electrical properties of chick skeletal muscle fibers developing in cell culture.
    Fischbach GD; Nameroff M; Nelson PG
    J Cell Physiol; 1971 Oct; 78(2):289-99. PubMed ID: 5167851
    [No Abstract]   [Full Text] [Related]  

  • 27. Extracellular potential field caused by the resting potential of a myelinated nerve fibre.
    Trayanova N; Gydikov A
    Electromyogr Clin Neurophysiol; 1987; 27(4):203-7. PubMed ID: 3622363
    [No Abstract]   [Full Text] [Related]  

  • 28. [Dynamics and regulation of fluid spaces (proceedings)].
    Deetjen P
    Klin Anasthesiol Intensivther; 1977; (15):1-10. PubMed ID: 926696
    [No Abstract]   [Full Text] [Related]  

  • 29. Pseudofacilitation: a misleading term.
    McComas AJ; Galea V; Einhorn RW
    Muscle Nerve; 1994 Jun; 17(6):599-607. PubMed ID: 8196702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of vinblastine on the component conductances of rat skeletal muscle fibers.
    Conte-Camerino D; Bryant SH
    Pharmacol Res Commun; 1977 Mar; 9(3):223-33. PubMed ID: 866368
    [No Abstract]   [Full Text] [Related]  

  • 31. Mathematical analysis of the changes in the intracellular potentials, generated by human skeletal muscle fibre under the effect of temperature.
    Stephanova DI; Dimitrov GV
    Electromyogr Clin Neurophysiol; 1984; 24(5):377-86. PubMed ID: 6723566
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of changes in intracellular action potential on potentials recorded by single-fiber, macro, and belly-tendon electrodes.
    Arabadzhiev TI; Dimitrov GV; Chakarov VE; Dimitrov AG; Dimitrova NA
    Muscle Nerve; 2008 Jun; 37(6):700-12. PubMed ID: 18506714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency-dependent effect of ethanol on action potentials of frog skeletal muscle fibers.
    Oz M; Frank GB
    Methods Find Exp Clin Pharmacol; 1995 Jun; 17(5):295-8. PubMed ID: 8830196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical analysis of the changes in the action potentials, generated by a frog skeletal muscle fibre under the effect of temperature.
    Stephanova DI
    Electromyogr Clin Neurophysiol; 1984; 24(5):369-76. PubMed ID: 6723565
    [No Abstract]   [Full Text] [Related]  

  • 35. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular acidosis enhances the excitability of working muscle.
    Pedersen TH; Nielsen OB; Lamb GD; Stephenson DG
    Science; 2004 Aug; 305(5687):1144-7. PubMed ID: 15326352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some features of the extracellular potential field of active single muscle fibres. A model investigation.
    Trayanova N; Gydikov A
    Electromyogr Clin Neurophysiol; 1986; 26(7):612-22. PubMed ID: 3816674
    [No Abstract]   [Full Text] [Related]  

  • 38. [Membrane potential measurements in the skeletal muscle with the "saccharose-gap" method].
    KOENIG K
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1962; 275():452-60. PubMed ID: 14457710
    [No Abstract]   [Full Text] [Related]  

  • 39. Extracellular potentials of human motor myelinated nerve fibers in normal case and in amyotrophic lateral sclerosis.
    Stephanova DI; Daskalova M
    Electromyogr Clin Neurophysiol; 2002; 42(7):443-8. PubMed ID: 12395619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of the muscle fibre end geometry on the extracellular potentials.
    Gydikov A; Gerilovsky L; Radicheva N; Trayanova N
    Biol Cybern; 1986; 54(1):1-8. PubMed ID: 3719026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.