BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7044835)

  • 1. Are the redox properties of tetrahydrofolate cofactors utilized in folate-dependent reactions?
    Matthews RG
    Fed Proc; 1982 Jul; 41(9):2600-4. PubMed ID: 7044835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of formaldehyde from N5-methyltetrahydrofolate by normal and leukemic leukocytes.
    Thorndike J; Beck WS
    Cancer Res; 1977 Apr; 37(4):1125-32. PubMed ID: 14782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the methylene/methyl interconversion catalyzed by methylenetetrahydrofolate reductase from pig liver.
    Matthews RG
    Biochemistry; 1982 Aug; 21(17):4165-71. PubMed ID: 6289874
    [No Abstract]   [Full Text] [Related]  

  • 4. Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase.
    Jarrett JT; Choi CY; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15739-48. PubMed ID: 9398303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylenetetrahydrofolate reductase. Steady state and rapid reaction studies on the NADPH-methylenetetrahydrofolate, NADPH-menadione, and methyltetrahydrofolate-menadione oxidoreductase activities of the enzyme.
    Vanoni MA; Ballou DP; Matthews RG
    J Biol Chem; 1983 Oct; 258(19):11510-4. PubMed ID: 6352699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The folate cycle and disease in humans.
    Fowler B
    Kidney Int Suppl; 2001 Feb; 78():S221-9. PubMed ID: 11169015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased hepatic 5, 10-methylenetetrahydrofolate reductase activity in mice after chronic phenytoin treatment.
    Billings RE
    Mol Pharmacol; 1984 May; 25(3):459-66. PubMed ID: 6374425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assays of methylenetetrahydrofolate reductase and methionine synthase activities by monitoring 5-methyltetrahydrofolate and tetrahydrofolate using high-performance liquid chromatography with fluorescence detection.
    Huang L; Zhang J; Hayakawa T; Tsuge H
    Anal Biochem; 2001 Dec; 299(2):253-9. PubMed ID: 11730351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neither methionine nor nitrous oxide inactivation of methionine synthase affect the concentration of 5,10-methylenetetrahydrofolate in rat liver.
    Horne DW
    J Nutr; 2003 Feb; 133(2):476-8. PubMed ID: 12566486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protonation state of methyltetrahydrofolate in a binary complex with cobalamin-dependent methionine synthase.
    Smith AE; Matthews RG
    Biochemistry; 2000 Nov; 39(45):13880-90. PubMed ID: 11076529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor.
    Hoover DM; Jarrett JT; Sands RH; Dunham WR; Ludwig ML; Matthews RG
    Biochemistry; 1997 Jan; 36(1):127-38. PubMed ID: 8993326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in liver folate enzyme patterns in premature and full term infants.
    Kalnitsky A; Rosenblatt D; Zlotkin S
    Pediatr Res; 1982 Aug; 16(8):628-31. PubMed ID: 7050870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-trans-retinoic acid rapidly induces glycine N-methyltransferase in a dose-dependent manner and reduces circulating methionine and homocysteine levels in rats.
    Ozias MK; Schalinske KL
    J Nutr; 2003 Dec; 133(12):4090-4. PubMed ID: 14652353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin B12-derivatives-enzyme cofactors and ligands of proteins and nucleic acids.
    Gruber K; Puffer B; Kräutler B
    Chem Soc Rev; 2011 Aug; 40(8):4346-63. PubMed ID: 21687905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into the substrate capacity of the acetaldehyde-tetrahydrofolate condensation product.
    LaBaume LB; Guynn RW
    Prog Clin Biol Res; 1985; 183():189-200. PubMed ID: 3901018
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of hepatic tetrahydrofolate in the species difference in methanol toxicity.
    Black KA; Eells JT; Noker PE; Hawtrey CA; Tephly TR
    Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3854-8. PubMed ID: 3923481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrous oxide inactivation of vitamin B12-dependent methionine synthetase on the subcellular distribution of folate coenzymes in rat liver.
    Horne DW; Patterson D; Cook RJ
    Arch Biochem Biophys; 1989 May; 270(2):729-33. PubMed ID: 2705787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Purification and activity evaluation of methionine synthase].
    Guo Y; Li C; Zhang ZL; Tian C; Wang XW; Liu JY
    Yao Xue Xue Bao; 2012 Nov; 47(11):1463-9. PubMed ID: 23387078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr): protonation state of the ligand and active-site residues.
    Alonso H; Cummins PL; Gready JE
    J Phys Chem B; 2009 Nov; 113(44):14787-96. PubMed ID: 19827815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Formyltetrahydrofolate promotes conformational remodeling in a methylenetetrahydrofolate reductase active site and inhibits its activity.
    Yamada K; Mendoza J; Koutmos M
    J Biol Chem; 2023 Feb; 299(2):102855. PubMed ID: 36592927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.