These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7045078)

  • 1. Mutations releasing mitochondrial biogenesis from glucose repression in Saccharomyces cerevisiae.
    Böker-Schmitt E; Francisci S; Schweyen RJ
    J Bacteriol; 1982 Jul; 151(1):303-10. PubMed ID: 7045078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of carbon catabolite repression mutants in Saccharomyces cerevisiae.
    Donnini C; Goffrini P; Rossi C; Ferrero I
    Microbiologica; 1990 Oct; 13(4):283-95. PubMed ID: 2087199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of mitochondria in carbon catabolite repression in yeast.
    Haussmann P; Zimmermann FK
    Mol Gen Genet; 1976 Oct; 148(2):205-11. PubMed ID: 790158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial respiratory mutants of Saccharomyces cerevisiae accumulate glycogen and readily mobilize it in a glucose-depleted medium.
    Enjalbert B; Parrou JL; Vincent O; François J
    Microbiology (Reading); 2000 Oct; 146 ( Pt 10)():2685-2694. PubMed ID: 11021944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased mitochondrial biogenesis in temperature-sensitive cell division cycle mutants of Saccharomyces cerevisiae.
    Genta HD; Mónaco ME; Aon MA
    Curr Microbiol; 1995 Dec; 31(6):327-31. PubMed ID: 8528003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.
    Lodi T; Goffrini P; Ferrero I; Donnini C
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2201-9. PubMed ID: 7496532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae.
    Bailey RB; Woodword A
    Mol Gen Genet; 1984; 193(3):507-12. PubMed ID: 6323921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolite repressive effects of 5-thio-D-glucose on Saccharomyces cerevisiae.
    Egilsson V; Gudnason V; Jónasdottir A; Ingvarsson S; Andresdottir V
    J Gen Microbiol; 1986 Dec; 132(12):3309-13. PubMed ID: 3309135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.
    Zimmermann FK; Scheel I
    Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of modifications in the glucose metabolism induced by genetic mutations in Saccharomyces cerevisiae by 13C- and H-NMR spectroscopy.
    Herve M; Buffin-Meyer B; Bouet F; Son TD
    Eur J Biochem; 2000 Jun; 267(11):3337-44. PubMed ID: 10824121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control.
    Watt R; Piper PW
    Mol Gen Genet; 1997 Jan; 253(4):439-47. PubMed ID: 9037103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two adjacent nuclear genes, ISF1 and NAM7/UPF1, cooperatively participate in mitochondrial functions in Saccharomyces cerevisiae.
    Altamura N; Dujardin G; Groudinsky O; Slonimski PP
    Mol Gen Genet; 1994 Jan; 242(1):49-56. PubMed ID: 7506349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of eukaryotic cells in relation to the structure of mitochondrial membranes and mitochondrial genome.
    Gbelská Y; Obernauerová M; Subík J
    Folia Microbiol (Praha); 1999; 44(6):697-702. PubMed ID: 11097029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. I. Effect of nuclear mutations on mitochondrial protein synthesis.
    Ebner E; Mennucci L; Schatz G
    J Biol Chem; 1973 Aug; 248(15):5360-8. PubMed ID: 4358612
    [No Abstract]   [Full Text] [Related]  

  • 17. The "SUN" family: UTH1, an ageing gene, is also involved in the regulation of mitochondria biogenesis in Saccharomyces cerevisiae.
    Camougrand NM; Mouassite M; Velours GM; Guérin MG
    Arch Biochem Biophys; 2000 Mar; 375(1):154-60. PubMed ID: 10683261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis of mitochondria. The effects of catabolite repression on the in vitro phospholipid synthetic capacities of subcellular fractions of respiratory-competent and respiratory-deficient strains of Saccharomyces cerevisiae.
    Cobon GS; Crowfoot PD; Linnane AW
    Arch Biochem Biophys; 1977 Jun; 181(2):454-61. PubMed ID: 332078
    [No Abstract]   [Full Text] [Related]  

  • 19. Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport systems for tricarboxylate-cycle anions.
    Perkins M; Haslam JM; Linnane AW
    Biochem J; 1973 Aug; 134(4):923-34. PubMed ID: 4587072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression.
    Entian KD; Fröhlich KU
    J Bacteriol; 1984 Apr; 158(1):29-35. PubMed ID: 6370959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.