These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 7045258)

  • 1. Renal tubular processing of small peptide hormones.
    Carone FA; Peterson DR; Flouret G
    J Lab Clin Med; 1982 Jul; 100(1):1-14. PubMed ID: 7045258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal handling of proteins and peptides.
    Carone FA
    Ann Clin Lab Sci; 1978; 8(4):287-94. PubMed ID: 686646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytosis in renal proximal tubules. Experimental electron microscopical studies of protein absorption and membrane traffic in isolated, in vitro perfused proximal tubules.
    Nielsen S
    Dan Med Bull; 1994 Jun; 41(3):243-63. PubMed ID: 7924457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal handling of luteinizing hormone releasing hormone: a model for peptide transport and hydrolysis.
    Peterson DR; Skopicki HA; Zikos D; Flouret G
    Prog Clin Biol Res; 1988; 258():135-47. PubMed ID: 2837770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal tubular transport and catabolism of proteins and peptides.
    Carone FA; Peterson DR; Oparil S; Pullman TN
    Kidney Int; 1979 Sep; 16(3):271-8. PubMed ID: 529676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handling of luteinizing hormone-releasing hormone by renal proximal tubular segments in vitro.
    Stetler-Stevenson MA; Flouret G; Peterson DR
    Am J Physiol; 1981 Aug; 241(2):F117-22. PubMed ID: 7023248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules.
    Christensen EI; Nielsen S; Moestrup SK; Borre C; Maunsbach AB; de Heer E; Ronco P; Hammond TG; Verroust P
    Eur J Cell Biol; 1995 Apr; 66(4):349-64. PubMed ID: 7656901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of proximal tubular hydrolysis and reabsorption of bradykinin by peptides.
    Oparil S; Carone FA; Pullman TN; Nakamura S
    Am J Physiol; 1976 Sep; 231(3):743-8. PubMed ID: 970453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro system to estimate renal brush border enzyme-mediated cleavage of Peptide linkages for designing radiolabeled antibody fragments of low renal radioactivity levels.
    Fujioka Y; Satake S; Uehara T; Mukai T; Akizawa H; Ogawa K; Saji H; Endo K; Arano Y
    Bioconjug Chem; 2005; 16(6):1610-6. PubMed ID: 16287261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro.
    Peterson DR; Oparil S; Flouret G; Carone FA
    Am J Physiol; 1977 Apr; 232(4):F319-24. PubMed ID: 851189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of angiotensin on proximal tubular reabsorption.
    Schuster VL
    Fed Proc; 1986 Apr; 45(5):1444-7. PubMed ID: 3514281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences between renal tubular processing of glucagon and insulin.
    Peterson DR; Carone FA; Oparil S; Christensen EI
    Am J Physiol; 1982 Feb; 242(2):F112-8. PubMed ID: 7039341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial heterogeneity in the handling of albumin by the rabbit proximal tubule.
    Clapp WL; Park CH; Madsen KM; Tisher CC
    Lab Invest; 1988 May; 58(5):549-58. PubMed ID: 3367637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms of tubular protein transport.
    Maunsbach AB
    Int Rev Physiol; 1976; 11():145-67. PubMed ID: 794010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of glucagon receptor mRNA in the rat proximal tubule: potential role for glucagon in the control of renal glucose transport.
    Marks J; Debnam ES; Dashwood MR; Srai SK; Unwin RJ
    Clin Sci (Lond); 2003 Mar; 104(3):253-8. PubMed ID: 12605582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and hydrolysis of glucagon in the proximal nephron.
    Peterson DR; Green EA; Oparil S; Hjelle JT
    Am J Physiol; 1986 Sep; 251(3 Pt 2):F460-7. PubMed ID: 2875655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plasma membrane and cellular handling of proteins.
    Christensen EI
    Tokai J Exp Clin Med; 1982; 7 Suppl():79-84. PubMed ID: 6764564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of renal tubular sodium transport by angiotensin II and atrial natriuretic factor.
    Harris PJ; Hiranyachattada S; Antoine AM; Walker L; Reilly AM; Eitle E
    Clin Exp Pharmacol Physiol Suppl; 1996; 3():S112-8. PubMed ID: 8993849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of kinins and angiotensins in the isolated glomerulus and brush border of rat kidney.
    Ward PE; Schultz W; Reynolds RC; Erdös EG
    Lab Invest; 1977 Jun; 36(6):599-606. PubMed ID: 194111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule.
    Carone FA; Pullman TN; Oparil S; Nakamura S
    Am J Physiol; 1976 May; 230(5):1420-4. PubMed ID: 1275086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.