BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7045282)

  • 1. Relationship between cyclopropane synthetase and the formation of cyclopropane fatty acids by Proteus vulgaris grown under various respiratory conditions.
    Jacques NA
    J Gen Microbiol; 1982 Jan; 128(1):177-84. PubMed ID: 7045282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on cyclopropane fatty acid synthesis. Effect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans.
    Jacques NA; Hunt Al
    Biochim Biophys Acta; 1980 Sep; 619(3):453-70. PubMed ID: 7459362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on cyclopropane fatty acid synthesis. Correlation between the state of reduction of respiratory components and the accumulation of methylene hexadecanoic acid by Pseudomonas denitrificans.
    Jacques NA
    Biochim Biophys Acta; 1981 Aug; 665(2):270-82. PubMed ID: 7284425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigations on the fatty acid composition of lipids from Salmonella minnesota S and R forms (author's transl)].
    Ferber E; Schlecht S; Fromme I
    Zentralbl Bakteriol Orig A; 1976 Nov; 236(2-3):275-87. PubMed ID: 1015016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid alterations during growth of Escherichia coli.
    Cronan JE
    J Bacteriol; 1968 Jun; 95(6):2054-61. PubMed ID: 4876126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmentation of cyclopropane fatty acid synthesis under stringent control in Escherichia coli.
    Taguchi M; Izui K; Katsuki H
    J Biochem; 1980 Dec; 88(6):1879-82. PubMed ID: 7007364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid synthesis in Escherichia coli.
    Knivett VA; Cullen J
    Biochem J; 1967 May; 103(2):299-306. PubMed ID: 5340364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.
    E G; Drujon T; Correia I; Ploux O; Guianvarc'h D
    Biochimie; 2013 Dec; 95(12):2336-44. PubMed ID: 23954860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of cyclopropane fatty acids oxidation of cis-9,10-methylene hexadecanoic and cis-9,10-methylene octadecanoic acids by rat-liver mitochondria.
    Chung AE
    Biochim Biophys Acta; 1966 Apr; 116(2):205-13. PubMed ID: 5956907
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of cultural conditions on the fatty acid composition of Thiobacillus novellus.
    Levin RA
    J Bacteriol; 1972 Nov; 112(2):903-9. PubMed ID: 5086663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.
    To TM; Grandvalet C; Tourdot-Maréchal R
    Appl Environ Microbiol; 2011 May; 77(10):3327-34. PubMed ID: 21421775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement of the octadecenoic acid growth-requirement for Acholeplasma laidlawii A by cis-9,10-methylenehexadecanoic acid, a cyclopropane fatty acid.
    Panos C; Leon O
    J Gen Microbiol; 1974 Jan; 80(1):93-100. PubMed ID: 4820352
    [No Abstract]   [Full Text] [Related]  

  • 13. Enhanced Production of High-Value Cyclopropane Fatty Acid in Yeast Engineered for Increased Lipid Synthesis and Accumulation.
    Peng H; He L; Haritos VS
    Biotechnol J; 2019 Apr; 14(4):e1800487. PubMed ID: 30298619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclopropane fatty acyl synthase in Sinorhizobium meliloti.
    Saborido Basconcillo L; Zaheer R; Finan TM; McCarry BE
    Microbiology (Reading); 2009 Feb; 155(Pt 2):373-385. PubMed ID: 19202086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positional specificity of cyclopropane ring formation from cis-octadecenoic acid isomers in Escherichia coli.
    Ohlrogge JB; Gunstone FD; Ismail IA; Lands WE
    Biochim Biophys Acta; 1976 May; 431(2):257-67. PubMed ID: 779836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying.
    Muñoz-Rojas J; Bernal P; Duque E; Godoy P; Segura A; Ramos JL
    Appl Environ Microbiol; 2006 Jan; 72(1):472-7. PubMed ID: 16391080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.
    Kimoto-Nira H; Kobayashi M; Nomura M; Sasaki K; Suzuki C
    Int J Food Microbiol; 2009 May; 131(2-3):183-8. PubMed ID: 19339076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid composition of the cellular slime mold Polysphondylium pallidum.
    Saito T; Ochiai H
    Lipids; 1998 Mar; 33(3):327-32. PubMed ID: 9560808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the Structural Biology, Mechanism, and Physiology of Cyclopropane Fatty Acid Modifications of Bacterial Membranes.
    Cronan JE; Luk T
    Microbiol Mol Biol Rev; 2022 Jun; 86(2):e0001322. PubMed ID: 35435731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some factors affecting cyclopropane acid formation in Escherichia coli.
    Knivett VA; Cullen J
    Biochem J; 1965 Sep; 96(3):771-6. PubMed ID: 5324304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.