These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 7045557)
41. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Sakai K Neuroscience; 2011 Dec; 197():200-24. PubMed ID: 21958868 [TBL] [Abstract][Full Text] [Related]
42. Serotonin control of sleep-wake behavior. Monti JM Sleep Med Rev; 2011 Aug; 15(4):269-81. PubMed ID: 21459634 [TBL] [Abstract][Full Text] [Related]
43. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Trulson ME; Jacobs BL Brain Res; 1979 Mar; 163(1):135-50. PubMed ID: 218676 [TBL] [Abstract][Full Text] [Related]
44. Respiratory rhythm multistability during sleep-wake states. Vibert JF; Foutz AS; Caille D; Hugelin A Brain Res; 1988 May; 448(2):403-5. PubMed ID: 3378166 [TBL] [Abstract][Full Text] [Related]
45. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model. Parmentier R; Zhao Y; Perier M; Akaoka H; Lintunen M; Hou Y; Panula P; Watanabe T; Franco P; Lin JS Neuropharmacology; 2016 Jul; 106():20-34. PubMed ID: 26723880 [TBL] [Abstract][Full Text] [Related]
46. Effects of the selective dopamine D-2 receptor agonist, quinpirole on sleep and wakefulness in the rat. Monti JM; Jantos H; Fernández M Eur J Pharmacol; 1989 Oct; 169(1):61-6. PubMed ID: 2574689 [TBL] [Abstract][Full Text] [Related]
47. Distinctive effects of modafinil and d-amphetamine on the homeostatic and circadian modulation of the human waking EEG. Chapotot F; Pigeau R; Canini F; Bourdon L; Buguet A Psychopharmacology (Berl); 2003 Mar; 166(2):127-38. PubMed ID: 12552359 [TBL] [Abstract][Full Text] [Related]
48. Monoamines and sleep: microdialysis findings in pons and amygdala. Shouse MN; Staba RJ; Saquib SF; Farber PR Brain Res; 2000 Mar; 860(1-2):181-9. PubMed ID: 10727641 [TBL] [Abstract][Full Text] [Related]
49. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Vassalli A; Franken P Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5464-E5473. PubMed ID: 28630298 [No Abstract] [Full Text] [Related]
50. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat]. Nicolaidis S; Gerozissis K; Orosco M Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034 [TBL] [Abstract][Full Text] [Related]
52. From waking to sleeping: neuronal and chemical substrates. Jones BE Trends Pharmacol Sci; 2005 Nov; 26(11):578-86. PubMed ID: 16183137 [TBL] [Abstract][Full Text] [Related]
53. Assessment of Wakefulness and Brain Arousal Regulation in Psychiatric Research. Sander C; Hensch T; Wittekind DA; Böttger D; Hegerl U Neuropsychobiology; 2015; 72(3-4):195-205. PubMed ID: 26901462 [TBL] [Abstract][Full Text] [Related]
54. [Neurochemical and electroencephalographical studies on the central actions of mianserin (author's transl)]. Sakai Y; Matsui Y Nihon Yakurigaku Zasshi; 1980 Sep; 76(6):479-93. PubMed ID: 7203282 [TBL] [Abstract][Full Text] [Related]
56. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Han Y; Shi YF; Xi W; Zhou R; Tan ZB; Wang H; Li XM; Chen Z; Feng G; Luo M; Huang ZL; Duan S; Yu YQ Curr Biol; 2014 Mar; 24(6):693-8. PubMed ID: 24613308 [TBL] [Abstract][Full Text] [Related]
57. Alpha-adrenoceptive influences on the control of the sleep-waking cycle in the cat. Leppävuori A; Putkonen PT Brain Res; 1980 Jul; 193(1):95-115. PubMed ID: 6103744 [TBL] [Abstract][Full Text] [Related]
58. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine. Timofeeva OA; Gordon CJ Brain Res; 2001 Mar; 893(1-2):165-77. PubMed ID: 11223004 [TBL] [Abstract][Full Text] [Related]
59. [The organization of the neuronal activity of the cortical cingulate gyrus in the waking-sleep cycle]. Oniani TN; Mandzhavidze ShD; Gvetadze LB; Varazashvili PN Neirofiziologiia; 1989; 21(6):832-40. PubMed ID: 2630921 [TBL] [Abstract][Full Text] [Related]
60. Sleep-inducing function of noradrenergic fibers in the medial preoptic area. Kumar VM; Sharma R; Wadhwa S; Manchanda SK Brain Res Bull; 1993; 32(2):153-8. PubMed ID: 8348339 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]