These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 7046851)
1. A degradation product of fenitrothion, 3-methyl-4-nitrophenol, is an inhibitor of mammalian ribonucleotide reductase. Wright JA; Hermonat MW; Hards RG Bull Environ Contam Toxicol; 1982 Apr; 28(4):480-3. PubMed ID: 7046851 [No Abstract] [Full Text] [Related]
2. Enhanced mutagenicity of low doses of alkylating agents and UV-light by inhibition of ribonucleotide reductase. Jenssen D Prog Clin Biol Res; 1986; 209A():541-9. PubMed ID: 3529110 [No Abstract] [Full Text] [Related]
3. Regulation of ribonucleotide reductase activity in intact mammalian cells. Hards RG; Wright JA Arch Biochem Biophys; 1984 May; 231(1):17-28. PubMed ID: 6372693 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of fenitrothion and conjugation of 3-methyl-4-nitrophenol in tomato plant (Lycopersicon esculentum). Fukushima M; Fujisawa T; Katagi T; Takimoto Y J Agric Food Chem; 2003 Aug; 51(17):5016-23. PubMed ID: 12903963 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the 3-methyl-4-nitrophenol degradation pathway and genes of Pseudomonas sp. strain TSN1. Takeo M; Yamamoto K; Sonoyama M; Miyanaga K; Kanbara N; Honda K; Kato DI; Negoro S J Biosci Bioeng; 2018 Sep; 126(3):355-362. PubMed ID: 29699943 [TBL] [Abstract][Full Text] [Related]
6. Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Zhang Z; Hong Q; Xu J; Zhang X; Li S Biodegradation; 2006 Jun; 17(3):275-83. PubMed ID: 16715406 [TBL] [Abstract][Full Text] [Related]
7. New analytical method for sensitive quantification of urinary 3-methyl-4-nitrophenol to assess fenitrothion exposure in general population and occupational sprayers. Okamura A; Saito I; Ueyama J; Ito Y; Nakajima T; Kamijima M Toxicol Lett; 2012 Apr; 210(2):220-4. PubMed ID: 22027349 [TBL] [Abstract][Full Text] [Related]
8. Herpes simplex virus ribonucleotide reductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, H1 and H2. Cohen EA; Charron J; Perret J; Langelier Y J Gen Virol; 1985 Apr; 66 ( Pt 4)():733-45. PubMed ID: 2984316 [TBL] [Abstract][Full Text] [Related]
9. Decomposition of 14C-fenitrothion under the influence of UV and sunlight under tropical and subtropical conditions. Zayed SM; Mahdy F Chemosphere; 2008 Feb; 70(9):1653-9. PubMed ID: 17822740 [TBL] [Abstract][Full Text] [Related]
10. Analysis of fenitrothion and metabolites in stored wheat. Abdel-Kader MH; Webster GR Int J Environ Anal Chem; 1982; 11(2):153-65. PubMed ID: 7068311 [TBL] [Abstract][Full Text] [Related]
11. Design, synthesis, and evaluation of octahydropyranopyrrole-based inhibitors of mammalian ribonucleotide reductase. Fuertes MJ; Kaur J; Deb P; Cooperman BS; Smith AB Bioorg Med Chem Lett; 2005 Dec; 15(23):5146-9. PubMed ID: 16176875 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of 3-methyl-4-nitrophenol, a main product of the insecticide fenitrothion, by Aspergillus niger. Kanaly RA; Kim IS; Hur HG J Agric Food Chem; 2005 Aug; 53(16):6426-31. PubMed ID: 16076129 [TBL] [Abstract][Full Text] [Related]
13. Adsorptive stripping square wave voltammetry (Ad-SSWV) accomplished with second-order multivariate calibration determination of fenitrothion and its metabolites in river water samples. Galeano-Díaz T; Guiberteau-Cabanillas A; Espinosa-Mansilla A; López-Soto MD Anal Chim Acta; 2008 Jun; 618(2):131-9. PubMed ID: 18513534 [TBL] [Abstract][Full Text] [Related]
14. Chemotaxis and biodegradation of 3-methyl- 4-nitrophenol by Ralstonia sp. SJ98. Bhushan B; Samanta SK; Chauhan A; Chakraborti AK; Jain RK Biochem Biophys Res Commun; 2000 Aug; 275(1):129-33. PubMed ID: 10944453 [TBL] [Abstract][Full Text] [Related]
15. Correlation of sister chromatid exchange formation through homologous recombination with ribonucleotide reductase inhibition. Matsuoka A; Lundin C; Johansson F; Sahlin M; Fukuhara K; Sjöberg BM; Jenssen D; Onfelt A Mutat Res; 2004 Mar; 547(1-2):101-7. PubMed ID: 15013704 [TBL] [Abstract][Full Text] [Related]
16. Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Dutia BM; Frame MC; Subak-Sharpe JH; Clark WN; Marsden HS Nature; 1986 May 22-28; 321(6068):439-41. PubMed ID: 3012359 [TBL] [Abstract][Full Text] [Related]
17. N-carbamoyloxyurea-resistant Chinese hamster ovary cells with elevated levels of ribonucleotide reductase activity. Hards RG; Wright JA J Cell Physiol; 1981 Feb; 106(2):309-19. PubMed ID: 7012160 [TBL] [Abstract][Full Text] [Related]
18. Coordination of copper(II) ions to catechoyl-dipeptides, the inhibitors of leucine aminopeptidase and ribonucleotide reductase. Kozłowski H; Radomska B; Kiss T; Balla J; Nakonieczna L; Pastuszak JJ; Langelier Y J Inorg Biochem; 1991 Sep; 43(4):779-87. PubMed ID: 1663992 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of ribonucleotide reductase by nitric oxide. Lepoivre M; Fieschi F; Coves J; Thelander L; Fontecave M Biochem Biophys Res Commun; 1991 Aug; 179(1):442-8. PubMed ID: 1652957 [TBL] [Abstract][Full Text] [Related]
20. Assay of ribonucleotide reductase activity in intact permeabilized hamster cells: an evaluation. Hards RG; Wright JA Arch Biochem Biophys; 1983 Feb; 220(2):576-83. PubMed ID: 6186200 [No Abstract] [Full Text] [Related] [Next] [New Search]