These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 7047493)
21. Protein II influences ferrichrome-iron transport in Escherichia coli K12. Coulton JW; Braun V J Gen Microbiol; 1979 Jan; 110(1):211-20. PubMed ID: 372490 [TBL] [Abstract][Full Text] [Related]
22. Protein fusions of beta-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. Coulton JW; Mason P; Cameron DR; Carmel G; Jean R; Rode HN J Bacteriol; 1986 Jan; 165(1):181-92. PubMed ID: 3079747 [TBL] [Abstract][Full Text] [Related]
23. Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV-K30 in Escherichia coli. de Lorenzo V; Neilands JB J Bacteriol; 1986 Jul; 167(1):350-5. PubMed ID: 3087960 [TBL] [Abstract][Full Text] [Related]
24. Iron transport in Escherichia coli: uptake and modification of ferrichrome. Hartmann A; Braun V J Bacteriol; 1980 Jul; 143(1):246-55. PubMed ID: 6995431 [TBL] [Abstract][Full Text] [Related]
25. Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake. Mademidis A; Köster W Mol Gen Genet; 1998 Apr; 258(1-2):156-65. PubMed ID: 9613584 [TBL] [Abstract][Full Text] [Related]
26. Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. Forman S; Nagiec MJ; Abney J; Perry RD; Fetherston JD Microbiology (Reading); 2007 Jul; 153(Pt 7):2332-2341. PubMed ID: 17600077 [TBL] [Abstract][Full Text] [Related]
27. Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB. Fischer E; Günter K; Braun V J Bacteriol; 1989 Sep; 171(9):5127-34. PubMed ID: 2670904 [TBL] [Abstract][Full Text] [Related]
28. tolQ is required for cloacin DF13 susceptibility in Escherichia coli expressing the aerobactin/cloacin DF13 receptor IutA. Thomas JA; Valvano MA FEMS Microbiol Lett; 1992 Mar; 70(2):107-11. PubMed ID: 1587457 [TBL] [Abstract][Full Text] [Related]
29. Diphenylamine increases cloacin DF13 sensitivity in avian septicemic strains of Escherichia coli. Valvano MA Vet Microbiol; 1992 Sep; 32(2):149-61. PubMed ID: 1441198 [TBL] [Abstract][Full Text] [Related]
30. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mademidis A; Killmann H; Kraas W; Flechsler I; Jung G; Braun V Mol Microbiol; 1997 Dec; 26(5):1109-23. PubMed ID: 9426146 [TBL] [Abstract][Full Text] [Related]
31. Iron(III) hydroxamate transport of Escherichia coli: restoration of iron supply by coexpression of the N- and C-terminal halves of the cytoplasmic membrane protein FhuB cloned on separate plasmids. Köster W; Braun V Mol Gen Genet; 1990 Sep; 223(3):379-84. PubMed ID: 2270077 [TBL] [Abstract][Full Text] [Related]
32. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. Mikael LG; Pawelek PD; Labrie J; Sirois M; Coulton JW; Jacques M Microbiology (Reading); 2002 Sep; 148(Pt 9):2869-2882. PubMed ID: 12213932 [TBL] [Abstract][Full Text] [Related]
33. fhuC and fhuD genes for iron (III)-ferrichrome transport into Escherichia coli K-12. Coulton JW; Mason P; Allatt DD J Bacteriol; 1987 Aug; 169(8):3844-9. PubMed ID: 3301821 [TBL] [Abstract][Full Text] [Related]
34. Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli. Köster W Biol Met; 1991; 4(1):23-32. PubMed ID: 1830209 [TBL] [Abstract][Full Text] [Related]
35. Divergence of the aerobactin iron uptake systems encoded by plasmids pColV-K30 in Escherichia coli K-12 and pSMN1 in Aerobacter aerogenes 62-1. Waters VL; Crosa JH J Bacteriol; 1988 Nov; 170(11):5153-60. PubMed ID: 3053646 [TBL] [Abstract][Full Text] [Related]
36. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. Sebulsky MT; Hohnstein D; Hunter MD; Heinrichs DE J Bacteriol; 2000 Aug; 182(16):4394-400. PubMed ID: 10913070 [TBL] [Abstract][Full Text] [Related]
37. Iron hydroxamate transport of Escherichia coli: nucleotide sequence of the fhuB gene and identification of the protein. Köster W; Braun V Mol Gen Genet; 1986 Sep; 204(3):435-42. PubMed ID: 3020380 [TBL] [Abstract][Full Text] [Related]
38. Point mutations in two conserved glycine residues within the integral membrane protein FhuB affect iron(III) hydroxamate transport. Köster W; Böhm B Mol Gen Genet; 1992 Apr; 232(3):399-407. PubMed ID: 1588908 [TBL] [Abstract][Full Text] [Related]
39. ColV plasmid-specific aerobactin synthesis by invasive strains of Escherichia coli. Warner PJ; Williams PH; Bindereif A; Neilands JB Infect Immun; 1981 Aug; 33(2):540-5. PubMed ID: 6456229 [TBL] [Abstract][Full Text] [Related]
40. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Schneider R; Hantke K Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]