These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7047512)

  • 1. Dissociation of actomyosin by vanadate plus ADP, and decomposition of the myosin-ADP-vanadate complex by actin.
    Kawamura T; Tawada K
    J Biochem; 1982 Apr; 91(4):1293-8. PubMed ID: 7047512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of actomyosin ATPase by vanadate.
    Goodno CC; Taylor EW
    Proc Natl Acad Sci U S A; 1982 Jan; 79(1):21-5. PubMed ID: 6459580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the effect of vanadate on the binding of myosin-subfragment-1.ADP to actin and on actomyosin subfragment 1 ATPase activity.
    Smith SJ; Eisenberg E
    Eur J Biochem; 1990 Oct; 193(1):69-73. PubMed ID: 2146116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of two heads of myosin in muscle contraction.
    Inoue A; Tanii I; Miyata M; Arata T
    Adv Exp Med Biol; 1988; 226():227-35. PubMed ID: 2970208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermonomer cross-linking of F-actin alters the dynamics of its interaction with H-meromyosin in the weak-binding state.
    Hegyi G; Belágyi J
    FEBS J; 2006 May; 273(9):1896-905. PubMed ID: 16640554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphorylation on the binding of smooth muscle heavy meromyosin X ADP to actin.
    Greene LE; Sellers JR
    J Biol Chem; 1987 Mar; 262(9):4177-81. PubMed ID: 2951383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of F-actin upon the binding of ADP to myosin and its fragments.
    Beinfeld MC; Martonosi AN
    J Biol Chem; 1975 Oct; 250(19):7871-8. PubMed ID: 126242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the ATPase activity and the ATP-induced fluorescence enhancement of SH-modified heavy meromyosin during its fractional inactivation by vanadate plus ADP: evidence for heterogeneity in the active sites.
    Kawamura T; Higuchi W; Emoto Y; Tawada K
    J Biochem; 1985 Jun; 97(6):1583-93. PubMed ID: 3161876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The amounts of adenosine di- and triphosphates bound to H-meromyosin and the adenosinetriphosphatase activity of the H-meromyosin-F-actin-relaxing protein system in the presence and absence of calcium ions. The physiological functions of the two routes of myosin adenosinetriphosphatase in muscle contraction.
    Inoue A; Tonomura Y
    J Biochem; 1975 Jul; 78(1):83-92. PubMed ID: 127789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of muscle contraction by vanadate. Mechanical and ligand binding studies on glycerol-extracted rabbit fibers.
    Dantzig JA; Goldman YE
    J Gen Physiol; 1985 Sep; 86(3):305-27. PubMed ID: 3903036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel mode of cooperative binding between myosin and Mg2+ -actin filaments in the presence of low concentrations of ATP.
    Tokuraku K; Kurogi R; Toya R; Uyeda TQ
    J Mol Biol; 2009 Feb; 386(1):149-62. PubMed ID: 19100745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of the two heads of the myosin molecule. III. Cooperativity of the two heads of the myosin molecule, shown by the effect of modification of head A with rho-chloromercuribenzoate on the interaction of head B with F-actin.
    Shibata-Sekiya K; Tonomura Y
    J Biochem; 1976 Dec; 80(6):1371-80. PubMed ID: 138679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the binding of heavy meromyosin and myosin subfragment 1 in F-actin.
    Greene LE
    Biochemistry; 1981 Apr; 20(8):2120-6. PubMed ID: 7016172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay.
    Katayama E
    J Mol Biol; 1998 May; 278(2):349-67. PubMed ID: 9571057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of nucleotide binding to actomyosin VI: evidence for allosteric head-head communication.
    Robblee JP; Olivares AO; de la Cruz EM
    J Biol Chem; 2004 Sep; 279(37):38608-17. PubMed ID: 15247304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2,4-Dinitrophenol as a specific inhibitor of the breakdown of the actomyosin-phosphate-ADP complex.
    Yamaka Y; Inoue A; Watanabe S
    J Biochem; 1976 Nov; 80(5):1109-15. PubMed ID: 137236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of heavy meromyosin and subfragment 1 with actin. Physical measurements in the presence and absence of adenosine triphosphate.
    Fraser AB; Eisenberg E; Kielley WW; Carlson FD
    Biochemistry; 1975 May; 14(10):2207-14. PubMed ID: 1096933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of a unit for actin-myosin interaction during the superprecipitation of actomyosin.
    Hozumi T; Hotta K
    J Biochem; 1977 Apr; 81(4):1141-6. PubMed ID: 142084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-headed binding of a spin-labeled-HMM-ADP complex to F-actin. Saturation transfer electron paramagnetic resonance and sedimentation studies.
    Manuck BA; Seidel JC; Gergely J
    Biophys J; 1986 Aug; 50(2):221-30. PubMed ID: 3017466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity chromatography of myosin, heavy meromyosin, and heavy meromyosin subfragment one on F-actin columns stabilized by phalloidin.
    Grandmont-Leblanc A; Gruda J
    Can J Biochem; 1977 Sep; 55(9):949-57. PubMed ID: 198071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.