These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 7047520)
1. The reconstitution of oxidative phosphorylation in mitochondria isolated from a ubiquinone-deficient mutant of Saccharomyces cerevisiae. De Santis A; Bertoli E; Di Gioia A; Melandri BA; Baccarini Melandri A J Bioenerg Biomembr; 1982 Jun; 14(3):159-69. PubMed ID: 7047520 [TBL] [Abstract][Full Text] [Related]
2. The oxidation of external NADH by an intermembrane electron transfer in mitochondria from the ubiquinone-deficient mutant E3-24 of Saccharomyces cerevisiae. De Santis A; Melandri BA Arch Biochem Biophys; 1984 Jul; 232(1):354-65. PubMed ID: 6378098 [TBL] [Abstract][Full Text] [Related]
3. The respiratory chain in a ubiquinone-deficient mutant of Saccharomyces cerevisiae. De Kok J; Slater EC Biochim Biophys Acta; 1975 Jan; 376(1):27-41. PubMed ID: 235982 [TBL] [Abstract][Full Text] [Related]
4. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae. Beattie DS; Clejan L Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830 [TBL] [Abstract][Full Text] [Related]
5. Effects of ubiquinone derivatives on the mitochondrial unselective channel of Saccharomyces cerevisiae. Gutiérrez-Aguilar M; López-Carbajal HM; Uribe-Alvarez C; Espinoza-Simón E; Rosas-Lemus M; Chiquete-Félix N; Uribe-Carvajal S J Bioenerg Biomembr; 2014 Dec; 46(6):519-27. PubMed ID: 25465614 [TBL] [Abstract][Full Text] [Related]
6. Modifications of oxidative phosphorylations in mitochondria isolated from a mutant of Saccharomyces cerevisiae. Possible alterations of the phosphate transport. Manon S; Guerin M Eur J Biochem; 1988 Feb; 172(1):205-11. PubMed ID: 3278906 [TBL] [Abstract][Full Text] [Related]
7. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria. Zhu QS; Beattie DS Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117 [TBL] [Abstract][Full Text] [Related]
8. Reduction of cytochrome b in mitochondria from yeast lacking coenzyme Q. Clejan L; Beattie DS Biochemistry; 1986 Dec; 25(24):7984-91. PubMed ID: 3542040 [TBL] [Abstract][Full Text] [Related]
10. Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity. Padilla S; Jonassen T; Jiménez-Hidalgo MA; Fernández-Ayala DJ; López-Lluch G; Marbois B; Navas P; Clarke CF; Santos-Ocaña C J Biol Chem; 2004 Jun; 279(25):25995-6004. PubMed ID: 15078893 [TBL] [Abstract][Full Text] [Related]
11. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations of oxidative phosphorylation and AAC expression. Müller V; Basset G; Nelson DR; Klingenberg M Biochemistry; 1996 Dec; 35(50):16132-43. PubMed ID: 8973185 [TBL] [Abstract][Full Text] [Related]
12. Phosphate transport and ATP synthesis in yeast mitochondria: effect of a new inhibitor: the tribenzylphosphate. Rigoulet M; Guerin B FEBS Lett; 1979 Jun; 102(1):18-22. PubMed ID: 378698 [No Abstract] [Full Text] [Related]
13. Kinetic constraints and oxidative phosphorylation yield in yeast mitochondria. Rigoulet M; Fitton V; Ouhabi R; Guérin B Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):773-7. PubMed ID: 8224508 [No Abstract] [Full Text] [Related]
14. ATP-regulation of cytochrome oxidase in yeast mitochondria: role of subunit VIa. Beauvoit B; Bunoust O; Guérin B; Rigoulet M Eur J Biochem; 1999 Jul; 263(1):118-27. PubMed ID: 10429195 [TBL] [Abstract][Full Text] [Related]
15. Ubiquinone accumulates in the mitochondria of yeast mutated in the ubiquinone binding protein, Qcr8p. Hagerman RA; Waring NJ; Willis RA; Hagerman AE Biochem Biophys Res Commun; 2006 May; 344(1):241-5. PubMed ID: 16597436 [TBL] [Abstract][Full Text] [Related]
16. Role of coenzyme Q in the mitochondrial respiratory chain. Reconstitution of activity in coenzyme Q deficient mutants of yeast. Brown GG; Beattie DS Biochemistry; 1977 Oct; 16(20):4449-54. PubMed ID: 199236 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces. Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Davidson JF; Schiestl RH Mol Cell Biol; 2001 Dec; 21(24):8483-9. PubMed ID: 11713283 [TBL] [Abstract][Full Text] [Related]
19. Biogenesis of mitochondria. oli2 Mutations affecting the coupling of oxidation to phosphorylation in Saccharomyces cerevisiae. Murphy M; Roberts H; Choo WM; Macreadie I; Marzuki S; Lukins HB; Linnane AW Biochim Biophys Acta; 1980 Oct; 592(3):431-44. PubMed ID: 6251866 [TBL] [Abstract][Full Text] [Related]
20. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]