These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7047520)

  • 21. Ubiquinone is not required for proton conductance by uncoupling protein 1 in yeast mitochondria.
    Esteves TC; Echtay KS; Jonassen T; Clarke CF; Brand MD
    Biochem J; 2004 Apr; 379(Pt 2):309-15. PubMed ID: 14680474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation.
    Fitton V; Rigoulet M; Ouhabi R; Guérin B
    Biochemistry; 1994 Aug; 33(32):9692-8. PubMed ID: 8068647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of K+ and other monovalent cations on yeast mitochondria.
    Uribe S; Sánchez N; Peña A
    Biochem Int; 1991 Jul; 24(4):615-23. PubMed ID: 1839207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of altered membrane sterol composition on oxidative phosphorylation in a haem mutant of Saccharomyces cerevisiae.
    Astin AM; Haslam JM
    Biochem J; 1977 Aug; 166(2):287-98. PubMed ID: 334162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of oligomycin on coupling in isolated mitochondria from oligomycin-resistant mutants of Saccharomyces cerevisiae carrying an oligomycin-resistant ATP phosphohydrolase.
    Somlo M
    Arch Biochem Biophys; 1977 Aug; 182(2):518-24. PubMed ID: 20055
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of anisotropic inhibitors of ATP synthesis in mitochondria of Saccharomyces cerevisiae. Comparison between a wild-type and a mutant strain altered in the stoichiometry of the MT DNA encoded proteolipids of ATP synthase.
    Manon S; Guérin M
    Biochem Mol Biol Int; 1993 Feb; 29(2):375-85. PubMed ID: 8495220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae.
    Prieto S; Bouillaud F; Rial E
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):657-61. PubMed ID: 7741693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria.
    Uribe S; Rangel P; Espínola G; Aguirre G
    Appl Environ Microbiol; 1990 Jul; 56(7):2114-9. PubMed ID: 2202257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coenzyme Q biosynthesis in health and disease.
    Acosta MJ; Vazquez Fonseca L; Desbats MA; Cerqua C; Zordan R; Trevisson E; Salviati L
    Biochim Biophys Acta; 2016 Aug; 1857(8):1079-1085. PubMed ID: 27060254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic Ubiquinones Specifically Bind to Mitochondrial Voltage-Dependent Anion Channel 1 (VDAC1) in Saccharomyces cerevisiae Mitochondria.
    Murai M; Okuda A; Yamamoto T; Shinohara Y; Miyoshi H
    Biochemistry; 2017 Jan; 56(4):570-581. PubMed ID: 28051849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The respiratory chain in yeast behaves as a single functional unit.
    Boumans H; Grivell LA; Berden JA
    J Biol Chem; 1998 Feb; 273(9):4872-7. PubMed ID: 9478928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis.
    Avelange-Macherel MH; Joyard J
    Plant J; 1998 Apr; 14(2):203-13. PubMed ID: 9628017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding and inhibitory effect of 2-heptyl-4-hydroxyquinoline-N-oxide in the presence of ubiquinone-3 in Saccharomyces cerevisiae.
    Burger G
    Eur J Biochem; 1980 May; 106(2):661-5. PubMed ID: 6249582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural requirements of quinone coenzymes for endogenous and dye-mediated coupled electron transport in bacterial photosynthesis.
    Baccarini-Melandri A; Gabellini N; Melandri BA; Hurt E; Hauska G
    J Bioenerg Biomembr; 1980 Aug; 12(3-4):95-110. PubMed ID: 7217045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells.
    Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B
    Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acid synthesis in mitochondria from Saccharomyces cerevisiae.
    Bessoule JJ; Lessire R; Rigoulet M; Guerin B; Cassagne C
    FEBS Lett; 1987 Apr; 214(1):158-62. PubMed ID: 3552725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants.
    Gomes F; Tahara EB; Busso C; Kowaltowski AJ; Barros MH
    Biochem J; 2013 Feb; 449(3):595-603. PubMed ID: 23116202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate-level phosphorylation in isolated yeast mitochondria.
    Rigoulet M; Velours J; Guerin B
    Eur J Biochem; 1985 Dec; 153(3):601-7. PubMed ID: 3908103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ATP-induced K(+)-transport pathway of yeast mitochondria may function as an uncoupling pathway.
    Manon S; Guérin M
    Biochim Biophys Acta; 1997 Feb; 1318(3):317-21. PubMed ID: 9048974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of tightly coupled mitochondria from wild type and nap mutant Neurospora crassa.
    Isakova EP; Gorpenko LV; Shurubor EI; Belozerskaya TA; Zvyagilskaya RA
    Biochemistry (Mosc); 2002 Feb; 67(2):260-4. PubMed ID: 11952424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.