These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7047523)

  • 1. Assembly of the catalytic trimers of aspartate transcarbamoylase from folded monomers.
    Burns DL; Schachman HK
    J Biol Chem; 1982 Aug; 257(15):8638-47. PubMed ID: 7047523
    [No Abstract]   [Full Text] [Related]  

  • 2. Assembly of the catalytic trimers of aspartate transcarbamoylase from unfolded polypeptide chains.
    Burns DL; Schachman HK
    J Biol Chem; 1982 Aug; 257(15):8648-54. PubMed ID: 7096328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity.
    Markby DW; Zhou BB; Schachman HK
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of dissociation of aspartate transcarbamoylase by p-mercuribenzoate.
    Subramani S; Schachman HK
    J Biol Chem; 1981 Feb; 256(3):1255-62. PubMed ID: 7005232
    [No Abstract]   [Full Text] [Related]  

  • 5. A model for the assembly of aspartate transcarbamoylase from catalytic and regulatory subunits.
    Bothwell MA; Schachman HK
    J Biol Chem; 1980 Mar; 255(5):1971-7. PubMed ID: 6986387
    [No Abstract]   [Full Text] [Related]  

  • 6. Aspartate transcarbamylase. A study of possible roles for the sulfhydryl group at the active site.
    Jacobson GR; Stark GR
    J Biol Chem; 1973 Dec; 248(23):8003-14. PubMed ID: 4584821
    [No Abstract]   [Full Text] [Related]  

  • 7. Equilibrium and kinetic studies of the association of catalytic and regulatory subunits of aspartate transcarbamoylase.
    Bothwell MA; Schachman HK
    J Biol Chem; 1980 Mar; 255(5):1962-70. PubMed ID: 6986386
    [No Abstract]   [Full Text] [Related]  

  • 8. Purification and characterization of a mutant aspartate transcarbamoylase lacking enzyme activity.
    Wall KA; Flatgaard JE; Schachman HK; Gibbons I
    J Biol Chem; 1979 Dec; 254(23):11910-6. PubMed ID: 387779
    [No Abstract]   [Full Text] [Related]  

  • 9. Hybridization as a technique for studying interchain interactions in the catalytic trimers of aspartate transcarbamoylase.
    Yang YR; Schachman HK
    Anal Biochem; 1987 May; 163(1):188-95. PubMed ID: 3039866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication between subunits in aspartate transcarbamoylase. Effect of active site ligands on the tertiary structure of regulatory chains.
    Wang C; Yang YR; Hu CY; Schachman HK
    J Biol Chem; 1981 Jul; 256(13):7028-34. PubMed ID: 7016880
    [No Abstract]   [Full Text] [Related]  

  • 11. An aspartate transcarbamylase lacking catalytic subunit interactions. II. Regulatory subunits are responsible for the lack of co-operative interactions between catalytic sites. Drastic feedback inhibition does not restore these interactions.
    Kerbiriou D; Hervé G
    J Mol Biol; 1973 Aug; 78(4):687-702. PubMed ID: 4587135
    [No Abstract]   [Full Text] [Related]  

  • 12. The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase.
    Hunt JB; Neece SH; Ginsburg A
    Anal Biochem; 1985 Apr; 146(1):150-7. PubMed ID: 3887984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspartate transcarbamoylase molecules lacking one regulatory subunit.
    Yang YR; Syvanen JM; Nagel GM; Schachman HK
    Proc Natl Acad Sci U S A; 1974 Mar; 71(3):918-22. PubMed ID: 4595576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long range effects of amino acid substitutions in the catalytic chain of aspartate transcarbamoylase. Localized replacements in the carboxyl-terminal alpha-helix cause marked alterations in allosteric properties and intersubunit interactions.
    Peterson CB; Schachman HK
    J Biol Chem; 1992 Feb; 267(4):2443-50. PubMed ID: 1733944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartate transcarbamoylase (Escherichia coli): preparation of subunits.
    Yang YR; Kirschner MW; Schachman HK
    Methods Enzymol; 1978; 51():35-41. PubMed ID: 357897
    [No Abstract]   [Full Text] [Related]  

  • 16. Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains.
    Yang YR; Schachman HK
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11980-4. PubMed ID: 8265657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase.
    Peterson CB; Schachman HK
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):458-62. PubMed ID: 1899140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase.
    Robey EA; Schachman HK
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the detection of homotropic effects in enzymes of low co-operativity. Application to modified aspartate transcarbamoylase.
    Hensley P; Yang YR; Schachman HK
    J Mol Biol; 1981 Oct; 152(1):131-52. PubMed ID: 7040676
    [No Abstract]   [Full Text] [Related]  

  • 20. Ligand-promoted strengthening of interchain bonding domains in catalytic subunits of aspartate transcarbamoylase.
    Burns DL; Schachman HK
    J Biol Chem; 1982 Oct; 257(20):12214-8. PubMed ID: 7118940
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.