These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 7048723)
1. Regulation of lactate metabolism in the rumen. Counotte GH; Prins RA Vet Res Commun; 1981 Dec; 5(2):101-15. PubMed ID: 7048723 [TBL] [Abstract][Full Text] [Related]
2. Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. Counotte GH; Lankhorst A; Prins RA J Anim Sci; 1983 May; 56(5):1222-35. PubMed ID: 6863168 [TBL] [Abstract][Full Text] [Related]
3. Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. Kung L; Hession AO J Anim Sci; 1995 Jan; 73(1):250-6. PubMed ID: 7601741 [TBL] [Abstract][Full Text] [Related]
4. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation. Aikman PC; Henning PH; Humphries DJ; Horn CH J Dairy Sci; 2011 Jun; 94(6):2840-9. PubMed ID: 21605754 [TBL] [Abstract][Full Text] [Related]
5. [Formate metabolism by lactate-producing and lactate-utilizing rumen bacteria]. Kalachniuk GI; Voĭtiuk OA; Savka OG Ukr Biokhim Zh (1978); 1994; 66(4):43-51. PubMed ID: 7879287 [TBL] [Abstract][Full Text] [Related]
6. Effects of an Aspergillus oryzae fermentation extract and other factors on lactate utilization by the ruminal bacterium Megasphaera elsdenii. Waldrip HM; Martin SA J Anim Sci; 1993 Oct; 71(10):2770-6. PubMed ID: 8226379 [TBL] [Abstract][Full Text] [Related]
7. Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro. Long M; Feng WJ; Li P; Zhang Y; He RX; Yu LH; He JB; Jing WY; Li YM; Wang Z; Liu GW Res Vet Sci; 2014 Feb; 96(1):28-9. PubMed ID: 24360648 [TBL] [Abstract][Full Text] [Related]
8. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. Klieve AV; Hennessy D; Ouwerkerk D; Forster RJ; Mackie RI; Attwood GT J Appl Microbiol; 2003; 95(3):621-30. PubMed ID: 12911711 [TBL] [Abstract][Full Text] [Related]
9. Effect of lasalocid or monensin on lactate production from in vitro rumen fermentation of various carbohydrates. Dennis SM; Nagaraja TG; Bartley EE J Dairy Sci; 1981 Dec; 64(12):2350-6. PubMed ID: 7341660 [TBL] [Abstract][Full Text] [Related]
10. Short communication: Does early-life administration of a Megasphaera elsdenii probiotic affect long-term establishment of the organism in the rumen and alter rumen metabolism in the dairy calf? Yohe TT; Enger BD; Wang L; Tucker HLM; Ceh CA; Parsons CLM; Yu Z; Daniels KM J Dairy Sci; 2018 Feb; 101(2):1747-1751. PubMed ID: 29174148 [TBL] [Abstract][Full Text] [Related]
11. Effect of dietary lactic acid on rumen lactate metabolism and blood acid-base status of lambs switched from low to high concentrate diets. Huntington GB; Britton RA J Anim Sci; 1979 Dec; 49(6):1569-76. PubMed ID: 43326 [TBL] [Abstract][Full Text] [Related]
12. Effect of coliform bacteria, feed deprivation, and pH on ruminal D-lactic acid production by steer or continuous-culture microbial populations changed from forage to concentrates. Slyter LL; Rumsey TS J Anim Sci; 1991 Jul; 69(7):3055-66. PubMed ID: 1885414 [TBL] [Abstract][Full Text] [Related]
13. Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch. Marounek M; Bartos S J Appl Bacteriol; 1987 Sep; 63(3):233-8. PubMed ID: 3429358 [TBL] [Abstract][Full Text] [Related]
14. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. Cruywagen CW; Taylor S; Beya MM; Calitz T J Dairy Sci; 2015 Aug; 98(8):5506-14. PubMed ID: 26026755 [TBL] [Abstract][Full Text] [Related]
15. Effects of a strain of Saccharomyces cerevisiae (Levucell SC1), a microbial additive for ruminants, on lactate metabolism in vitro. Chaucheyras F; Fonty G; Bertin G; Salmon JM; Gouet P Can J Microbiol; 1996 Sep; 42(9):927-33. PubMed ID: 8864215 [TBL] [Abstract][Full Text] [Related]
16. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. Chiquette J; Allison MJ; Rasmussen MA J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612 [TBL] [Abstract][Full Text] [Related]
17. Effects of feed additives on rumen and blood profiles during a starch and fructose challenge. Golder HM; Celi P; Rabiee AR; Lean IJ J Dairy Sci; 2014 Feb; 97(2):985-1004. PubMed ID: 24210482 [TBL] [Abstract][Full Text] [Related]
18. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. Pan XH; Yang L; Xue FG; Xin HR; Jiang LS; Xiong BH; Beckers Y J Dairy Sci; 2016 Nov; 99(11):8790-8801. PubMed ID: 27568043 [TBL] [Abstract][Full Text] [Related]
19. In vitro fermentation of sugars, grains, and by-product feeds in relation to initiation of ruminal lactate production. Cullen AJ; Harmon DL; Nagaraja TG J Dairy Sci; 1986 Oct; 69(10):2616-21. PubMed ID: 3805445 [TBL] [Abstract][Full Text] [Related]
20. Effects of Glucose and Starch on Lactate Production by Newly Isolated Streptococcus bovis S1 from Saanen Goats. Chen L; Luo Y; Wang H; Liu S; Shen Y; Wang M Appl Environ Microbiol; 2016 Oct; 82(19):5982-9. PubMed ID: 27474714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]