These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 7049253)
1. Compartmentation of cytosolic dehydrogenases studied by transfer of tritium from labelled substrates into lactate in rat hepatocytes. Vind C; Grunnet N Biochim Biophys Acta; 1982 Jun; 720(3):295-302. PubMed ID: 7049253 [TBL] [Abstract][Full Text] [Related]
2. Interaction of cytoplasmic dehydrogenases: quantitation of pathways of ethanol metabolism. Vind C; Grunnet N Pharmacol Biochem Behav; 1983; 18 Suppl 1():209-13. PubMed ID: 6356159 [TBL] [Abstract][Full Text] [Related]
3. The reversibility of cytosolic dehydrogenase reactions in hepatocytes from starved and fed rats. Effect of fructose. Vind C; Grunnet N Biochem J; 1984 Sep; 222(2):437-46. PubMed ID: 6477525 [TBL] [Abstract][Full Text] [Related]
4. Contribution of non-ADH pathways to ethanol oxidation in hepatocytes from fed and hyperthyroid rats. Effect of fructose and xylitol. Vind C; Grunnet N Biochem Pharmacol; 1985 Mar; 34(5):655-61. PubMed ID: 3156600 [TBL] [Abstract][Full Text] [Related]
5. Pathways of reducing equivalents in hepatocytes from rats. Estimation of cytosolic fluxes by means of 3H-labelled substrates for either A- or B-specific dehydrogenases. Vind C; Hunding A; Grunnet N Biochem J; 1987 May; 243(3):625-30. PubMed ID: 3663093 [TBL] [Abstract][Full Text] [Related]
6. Rate determining factors of ethanol oxidation in hepatocytes from starved and fed rats: effect of acetaldehyde concentration on the rate of NADH oxidation catalyzed by alcohol dehydrogenase. Vind C; Grunnet N Alcohol Alcohol Suppl; 1987; 1():295-9. PubMed ID: 3426694 [TBL] [Abstract][Full Text] [Related]
7. Pathways of reducing equivalents in hepatocytes from starved, ethanol-induced, and hyperthyroid rats during ethanol and xylitol metabolism. Vind C; Grunnet N Arch Biochem Biophys; 1981 Oct; 211(2):697-708. PubMed ID: 7305394 [No Abstract] [Full Text] [Related]
8. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Williamson DH; Lund P; Krebs HA Biochem J; 1967 May; 103(2):514-27. PubMed ID: 4291787 [TBL] [Abstract][Full Text] [Related]
9. Generation of extramitochondrial reducing power in gluconeogenesis. Krebs HA; Gascoyne T; Notton BM Biochem J; 1967 Jan; 102(1):275-82. PubMed ID: 4291560 [TBL] [Abstract][Full Text] [Related]
10. THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER. DAWKINS PD; DICKENS F Biochem J; 1965 Feb; 94(2):353-67. PubMed ID: 14346088 [TBL] [Abstract][Full Text] [Related]
11. Utilization and metabolic effects of acetaldehyde and ethanol in the perfused rat liver. Lindros KO; Vihma R; Forsander OA Biochem J; 1972 Feb; 126(4):945-52. PubMed ID: 4342167 [TBL] [Abstract][Full Text] [Related]
12. Regulation of ethanol metabolism in the rat. Cheema-Dhadli S; Halperin FA; Sonnenberg K; MacMillan V; Halperin ML Biochem Cell Biol; 1987 May; 65(5):458-66. PubMed ID: 3620161 [TBL] [Abstract][Full Text] [Related]
13. [The metabolite pair lactate-pyruvate as redox indicator]. Scholz R Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):277. PubMed ID: 4316045 [No Abstract] [Full Text] [Related]
14. Effects of thyroidectomy and triiodothyronine administration on rat liver alcohol dehydrogenase. Mezey E; Potter JJ Gastroenterology; 1981 Mar; 80(3):566-74. PubMed ID: 7005000 [TBL] [Abstract][Full Text] [Related]
17. [The activity of xylose reductase and xylitol dehydrogenase in yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534 [TBL] [Abstract][Full Text] [Related]
18. Purification and properties of the xylitol dehydrogenase from Pullularia pullulans. Sugai JK; Veiga LA An Acad Bras Cienc; 1981 Mar; 53(1):183-93. PubMed ID: 7197134 [TBL] [Abstract][Full Text] [Related]
19. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose. Mayer G; Kulbe KD; Nidetzky B Appl Biochem Biotechnol; 2002; 98-100():577-89. PubMed ID: 12018283 [TBL] [Abstract][Full Text] [Related]
20. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]