These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7049253)

  • 21. [Studies on the reaction of alcohol dehydrogenases with tritium-labelled substrates. 3. Primary aliphatic alcohols and aldehydes as substrates of liver alcohol dehydrogenase].
    Palm D; Fiedler T; Ruhrseitz D
    Z Naturforsch B; 1968 May; 23(5):623-8. PubMed ID: 4385919
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate.
    Siess EA; Brocks DG; Lattke HK; Wieland OH
    Biochem J; 1977 Aug; 166(2):225-35. PubMed ID: 199159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions.
    Esterbauer H; Zollner H; Lang J
    Biochem J; 1985 Jun; 228(2):363-73. PubMed ID: 3160340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.
    Veiga da Cunha M; Foster MA
    J Bacteriol; 1992 Feb; 174(3):1013-9. PubMed ID: 1732191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of endogenous oxalate production: biochemical considerations of the roles of glycollate oxidase and lactate dehydrogenase.
    Bais R; Rofe AM; Conyers RA
    Clin Sci (Lond); 1989 Mar; 76(3):303-9. PubMed ID: 2647367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of 1-3H-ethanol by isolated liver cells. Time-course of the transfer of tritium from R,S-1-3H-ethanol to lactate and beta-hydroxybutyrate.
    Grunnet N; Thieden HI; Quistorff B
    Acta Chem Scand B; 1976; 30(4):345-52. PubMed ID: 936885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence against tight channelling of NADH in hepatocytes.
    Rognstad R
    Arch Biochem Biophys; 1991 May; 286(2):555-61. PubMed ID: 1897977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lactate dehydrogenase isoenzymes of sperm cells and tests.
    Clausen J
    Biochem J; 1969 Jan; 111(2):207-18. PubMed ID: 4303363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for binding of NAD dimers to NAD-dependent dehydrogenases.
    Finazzi-Agrò A; Avigliano L; Carelli V; Liberatore F; Casini A
    Biochim Biophys Acta; 1981 Sep; 661(1):120-3. PubMed ID: 7028119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of cytosolic NAD(P)H-quinone oxidoreductase and alcohol dehydrogenase in the reduction of p-nitrosophenol following chronic ethanol ingestion.
    Hajos AK; Winston GW
    Arch Biochem Biophys; 1992 Jun; 295(2):223-9. PubMed ID: 1586150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Live cell imaging of cytosolic NADH/NAD
    Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases.
    Lunzer R; Mamnun Y; Haltrich D; Kulbe KD; Nidetzky B
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):91-9. PubMed ID: 9806889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rate of ethanol metabolism in isolated rat hepatocytes.
    Crow KE; Cornell NW; Veech RL
    Alcohol Clin Exp Res; 1977 Jan; 1(1):43-50. PubMed ID: 201177
    [No Abstract]   [Full Text] [Related]  

  • 34. Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm.
    Stubbs M; Veech RL; Krebs HA
    Biochem J; 1972 Jan; 126(1):59-65. PubMed ID: 4342386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool.
    Girbal L; Soucaille P
    J Bacteriol; 1994 Nov; 176(21):6433-8. PubMed ID: 7961393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of malate dehydrogenase and control of rates of ethanol metabolism in rats.
    Crow KE; Braggins TJ; Batt RD; Hardman MJ
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():233-6. PubMed ID: 6356162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of the interaction of ethanol metabolism with gluconeogenesis and fatty acid oxidation in the perfused liver of fasted rats.
    Chalhoub ER; Belovich JM
    Arch Biochem Biophys; 2022 Mar; 718():109148. PubMed ID: 35143783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shuttles for translocation of NADH in isolated liver cells from fed rats during oxidation of xylitol.
    Pösö AR
    Acta Chem Scand B; 1979; B33(2):93-9. PubMed ID: 219645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.