These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 7049258)

  • 1. Direct high-resolution nuclear magnetic resonance studies of cation transport in vivo, Na+ transport in yeast cells.
    Balschi JA; Cirillo VP; Springer CS
    Biophys J; 1982 Jun; 38(3):323-6. PubMed ID: 7049258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium transport and phosphorus metabolism in sodium-loaded yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo.
    Höfeler H; Jensen D; Pike MM; Delayre JL; Cirillo VP; Springer CS; Fossel ET; Balschi JA
    Biochemistry; 1987 Aug; 26(16):4953-62. PubMed ID: 3311159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 39K, 23Na, and 31P NMR studies of ion transport in Saccharomyces cerevisiae.
    Ogino T; den Hollander JA; Shulman RG
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5185-9. PubMed ID: 6351054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 7Li and 23Na NMR studies of transmembrane cation transport mediated by ionophore lasalocid A.
    Juvvadi P; Kalapaty E
    J Pept Sci; 1998 Feb; 4(1):15-20. PubMed ID: 9523752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular cation transport studied by 6/7Li and 23Na NMR in a porous Mo132 Keplerate type nano-capsule as model system.
    Rehder D; Haupt ET; Müller A
    Magn Reson Chem; 2008; 46 Suppl 1():S24-9. PubMed ID: 18853473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo measurements of intra- and extracellular Na+ and water in the brain and muscle by nuclear magnetic resonance spectroscopy with shift reagent.
    Naritomi H; Kanashiro M; Sasaki M; Kuribayashi Y; Sawada T
    Biophys J; 1987 Oct; 52(4):611-6. PubMed ID: 3676441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance.
    Górecki K; Hägerhäll C; Drakenberg T
    Anal Biochem; 2014 Jan; 445():80-6. PubMed ID: 24139955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution NMR studies of transmembrane cation transport: use of an aqueous shift reagent for 23Na.
    Pike MM; Simon SR; Balschi JA; Springer CS
    Proc Natl Acad Sci U S A; 1982 Feb; 79(3):810-4. PubMed ID: 6174981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palytoxin-induced Na+ influx into yeast cells expressing the mammalian sodium pump is due to the formation of a channel within the enzyme.
    Redondo J; Fiedler B; Scheiner-Bobis G
    Mol Pharmacol; 1996 Jan; 49(1):49-57. PubMed ID: 8569711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K⁺ uptake and Na⁺ transport in yeast.
    Zhang X; Zhang M; Takano T; Liu S
    Biochem Biophys Res Commun; 2011 Oct; 414(1):96-100. PubMed ID: 21945443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local environment and distribution of alkali ions in polyelectrolyte complexes studied by solid-state NMR.
    Causemann S; Schönhoff M; Eckert H
    Phys Chem Chem Phys; 2011 May; 13(19):8967-76. PubMed ID: 21465039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of intra- and extracellular 23Na+ signals in yeast cell suspensions using longitudinal magnetic resonance relaxography.
    Zhang Y; Poirer-Quinot M; Springer CS; Balschi JA
    J Magn Reson; 2010 Jul; 205(1):28-37. PubMed ID: 20430659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Agalakova NI; Ivanova TI
    Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 23Na-NMR study on cation transport systems in a patient with hypokalemic periodic paralysis.
    Cacciafesta M; Cammarella I; Ruggeri R; Germani MA; Soldo AR; Musca A
    Recenti Prog Med; 1993 May; 84(5):350-6. PubMed ID: 8390085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schizosaccharomyces pombe possesses two plasma membrane alkali metal cation/H antiporters differing in their substrate specificity.
    Papouskova K; Sychrova H
    FEMS Yeast Res; 2007 Mar; 7(2):188-95. PubMed ID: 17266728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of the seryl and threonyl residues of the fifth transmembrane domain to the substrate specificity of yeast plasma membrane Na+/H+ antiporters.
    Kinclova-Zimmermannova O; Zavrel M; Sychrova H
    Mol Membr Biol; 2006; 23(4):349-61. PubMed ID: 16923728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of sodium efflux in yeast.
    Rodríguez-Navarro A; Ortega MD
    FEBS Lett; 1982 Feb; 138(2):205-8. PubMed ID: 7040111
    [No Abstract]   [Full Text] [Related]  

  • 19. Study of ion translocation by respiratory complex I. A new insight using (23)Na NMR spectroscopy.
    Batista AP; Marreiros BC; Louro RO; Pereira MM
    Biochim Biophys Acta; 2012 Oct; 1817(10):1810-6. PubMed ID: 22445719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active transport of sodium ions from the yeast cell.
    CONWAY EJ; RYAN H; CARTON E
    Biochem J; 1954 Sep; 58(1):158-67. PubMed ID: 13198868
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.