These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 7049356)
1. Microtubule complexes correlated with growth rate and water proton relaxation times in human breast cancer cells. Beall PT; Brinkley BR; Chang DC; Hazlewood CF Cancer Res; 1982 Oct; 42(10):4124-30. PubMed ID: 7049356 [TBL] [Abstract][Full Text] [Related]
2. NMR relaxation times of water protons in human colon cancer cell lines and clones. Beall PT; Hazlewood CF; Rutzky LP Cancer Biochem Biophys; 1982; 6(1):7-12. PubMed ID: 6284348 [TBL] [Abstract][Full Text] [Related]
3. [Nuclear magnetic resonance investigations of DMBA-induced rat breast cancers--the relationship between tumor doubling times and water proton spin-lattice relaxation times]. Kimijima I; Watanabe I; Endo S; Ebina S; Nagai Y Gan No Rinsho; 1985 Apr; 31(4):394-8. PubMed ID: 2989580 [TBL] [Abstract][Full Text] [Related]
4. Absence of correlation between spin-lattice relaxation times and water content in human tumor tissues. Ranade SS; Shah S; Korgaonkar KS; Kasturi SR; Chaughule RS; Vijayaraghavan R Physiol Chem Phys; 1976; 8(2):131-4. PubMed ID: 981352 [TBL] [Abstract][Full Text] [Related]
5. Change in water proton relaxation time during erythrocyte maturation. Cameron IL; Dung HC; Hunter KE; Hazlewood CF J Cell Physiol; 1983 Sep; 116(3):409-14. PubMed ID: 6309873 [TBL] [Abstract][Full Text] [Related]
6. Nuclear magnetic resonance spin-lattice times of normal and transformed cultured mammalian cells and of normal and neoplastic animal tissues. Raaphorst GP; Kruuv J Physiol Chem Phys; 1981; 13(3):251-8. PubMed ID: 7301946 [TBL] [Abstract][Full Text] [Related]
7. Methodological aspects of analysing human breast cancer cell lines by NMR spectroscopy. McCormack SA; Bearden D; Dennison DK; Egan T; Misra L; Hazlewood CF Physiol Chem Phys Med NMR; 1984; 16(5):359-79. PubMed ID: 6531402 [TBL] [Abstract][Full Text] [Related]
8. Magnetic resonance study of virgin and explanted silicone breast prostheses. Can proton relaxation times be used to monitor their biostability? Dorne L; Stroman P; Rolland C; Auger M; Alikacem N; Bronskill M; Grondin P; King MW; Guidoin R ASAIO J; 1994; 40(3):M625-31. PubMed ID: 8555590 [TBL] [Abstract][Full Text] [Related]
9. [Nuclear magnetic resonance study of the immature rat brain]. Masumura M; Yamaguchi M; Shirakuni T; Nagashima T; Tamaki N; Matsumoto S; Sugiura M No To Shinkei; 1984 Aug; 36(8):805-11. PubMed ID: 6498026 [TBL] [Abstract][Full Text] [Related]
10. [Nuclear magnetic resonance studies on brain edema--time course of 1H-NMR relaxation times (author's transl)]. Naruse S; Horikawa Y; Tanaka C; Hirakawa K; Nishikawa H; Yoshizaki K No To Shinkei; 1981 Jun; 33(3):569-75. PubMed ID: 7259896 [TBL] [Abstract][Full Text] [Related]
11. Influence of paramagnetic ions bound to human serum albumin on water 1HNMR relaxation times. Marzola P; Cannistraro S Physiol Chem Phys Med NMR; 1986; 18(4):263-73. PubMed ID: 3615639 [TBL] [Abstract][Full Text] [Related]
12. Cellular targets of the anti-breast cancer agent Z-1,1-dichloro-2,3-diphenylcyclopropane: type II estrogen binding sites and tubulin. ter Haar E; Hamel E; Balachandran R; Day BW Anticancer Res; 1997; 17(3C):1861-9. PubMed ID: 9216636 [TBL] [Abstract][Full Text] [Related]
13. The relaxation times of water protons and division rate in human breast cancer cells: a possible relationship to survival. Beall PT; Cailleau RM; Hazlewood CF Physiol Chem Phys; 1976; 8(3):281-4. PubMed ID: 1013180 [No Abstract] [Full Text] [Related]
14. Proton magnetic relaxation studies in normal and cancerous breast tissues. Arulmozhi V; Narayanan S; Krishnan B; Rao AS; Veliath AJ; Ratnakar C Physiol Chem Phys Med NMR; 1988; 20(4):337-43. PubMed ID: 3254542 [TBL] [Abstract][Full Text] [Related]
15. Nuclear magnetic resonance study of cancer: systemic effect on the proton relaxation times (T1 and T2) of human serum. de Certaines J; Bernard AM; Benoist L; Rivet P; Gallier J; Morin P Cancer Detect Prev; 1981; 4(1-4):267-71. PubMed ID: 7349785 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions. Waterman-Storer CM; Sanger JW; Sanger JM Cell Motil Cytoskeleton; 1993; 26(1):19-39. PubMed ID: 8106173 [TBL] [Abstract][Full Text] [Related]
17. Relationships between ice crystal size, water content and proton NMR relaxation times in cells. Cameron IL; Hunter KE; Ord VA; Fullerton GD Physiol Chem Phys Med NMR; 1985; 17(4):371-86. PubMed ID: 3836419 [TBL] [Abstract][Full Text] [Related]
18. NMR proton longitudinal relaxation times in tissues of the tumour-bearing C3H mouse studied as a function of frequency. Escanye JM; Canet D; Robert J; Brondeau J Cancer Detect Prev; 1981; 4(1-4):261-5. PubMed ID: 7349784 [TBL] [Abstract][Full Text] [Related]
19. 1H-NMR analysis of nerve edema in the streptozotocin-induced diabetic rat. Suzuki E; Yasuda K; Yasuda K; Miyazaki S; Takeda N; Inouye H; Omawari N; Miura K J Lab Clin Med; 1994 Nov; 124(5):627-37. PubMed ID: 7964120 [TBL] [Abstract][Full Text] [Related]
20. [Nuclear magnetic resonance studies of effects of glycerol on brain edema]. Naruse S; Horikawa Y; Tanaka C; Hirakawa K; Nishikawa H No To Shinkei; 1982 Aug; 34(8):805-9. PubMed ID: 7126382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]