These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7049573)

  • 1. Mathematical modeling and simulation of the postural control loop: Part I.
    Agarwal GC; Gottlieb GL
    Crit Rev Biomed Eng; 1982; 8(2):93-134. PubMed ID: 7049573
    [No Abstract]   [Full Text] [Related]  

  • 2. Mathematical modeling and simulation of the postural control loop. Part III.
    Agarwal GC; Gottlieb GL
    Crit Rev Biomed Eng; 1984; 12(1):49-93. PubMed ID: 6394213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling and simulation of the postural control loop--Part II.
    Agarwal GC; Gottlieb GL
    Crit Rev Biomed Eng; 1984; 11(2):113-54. PubMed ID: 6386331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.
    Schieber MH; Rivlis G
    J Neurophysiol; 2007 Jan; 97(1):70-82. PubMed ID: 17035361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failed excitability of spinal motoneurons induced by prolonged running exercise.
    Racinais S; Girard O; Micallef JP; Perrey S
    J Neurophysiol; 2007 Jan; 97(1):596-603. PubMed ID: 17093121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the lambda model for human postural control during ankle strategy.
    Micheau P; Kron A; Bourassa P
    Biol Cybern; 2003 Sep; 89(3):227-36. PubMed ID: 14504941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of human movement with applications to the study of human locomotion.
    Winter DA
    Crit Rev Biomed Eng; 1984; 9(4):287-314. PubMed ID: 6368126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop control of movement of skeletal muscle.
    Petrofsky JS; Phillips CA
    Crit Rev Biomed Eng; 1985; 13(1):35-96. PubMed ID: 3902360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spinal cord connections of the myofascial trigger spots.
    Kuan TS; Hong CZ; Chen JT; Chen SM; Chien CH
    Eur J Pain; 2007 Aug; 11(6):624-34. PubMed ID: 17174128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of motor circuits in the spinal cord: driven to function by genetic and experience-dependent mechanisms.
    Ladle DR; Pecho-Vrieseling E; Arber S
    Neuron; 2007 Oct; 56(2):270-83. PubMed ID: 17964245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Neural control mechanisms of head movements by descending pathways].
    Sasaki S
    Nihon Seirigaku Zasshi; 1987; 49(11):659-73. PubMed ID: 3328785
    [No Abstract]   [Full Text] [Related]  

  • 12. Muscle compound motor action potentials from esophago-vertebral electrical stimulation of the spinal cord in the normal awake man.
    Caccia MR; Valla PL; Osio M; Mangoni A
    Electromyogr Clin Neurophysiol; 1999 Dec; 39(8):493-501. PubMed ID: 10627936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intersession reliability of H:M ratio is greater than the H-reflex at a percentage of M-max.
    Hoch MC; Krause BA
    Int J Neurosci; 2009; 119(3):345-52. PubMed ID: 19116841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal reflex in human lower leg muscles evoked by transcutaneous spinal cord stimulation.
    Kitano K; Koceja DM
    J Neurosci Methods; 2009 May; 180(1):111-5. PubMed ID: 19427537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds.
    Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Feb; 95(2):602-18. PubMed ID: 16282202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency conditioning electrical stimulation evokes supraspinal independent long-term depression but not long-term potentiation of the spinal withdrawal reflex in rats.
    You HJ; Tjølsen A; Arendt-Nielsen L
    Brain Res; 2006 May; 1090(1):116-22. PubMed ID: 16638604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explaining patterns of neural activity in the primary motor cortex using spinal cord and limb biomechanics models.
    Trainin E; Meir R; Karniel A
    J Neurophysiol; 2007 May; 97(5):3736-50. PubMed ID: 17360816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of H- and M-waves recorded from rat forelimbs.
    Hosoido T; Motoyama S; Goto M; Mori F; Tajima T; Hirata H; Wada N
    Neurosci Lett; 2009 Feb; 450(3):239-41. PubMed ID: 19056465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrophysiological evidence of axon branching in the laryngeal recurrent motor nerve (author's transl)].
    Gauthier P; Barillot JC; Dussardier M
    J Physiol (Paris); 1980; 76(1):39-48. PubMed ID: 7411474
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.