These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 704983)
1. Possible role of fundus circulation as an intraocular colour filter in certain fishes. Sivak JG; Roth PI Rev Can Biol; 1978 Jun; 37(2):85-90. PubMed ID: 704983 [TBL] [Abstract][Full Text] [Related]
3. Effect of a yellow ocular filter on chromatic aberration: the fish eye as an example. Sivak JG; Bobier WR Am J Optom Physiol Opt; 1978 Dec; 55(12):813-7. PubMed ID: 753108 [TBL] [Abstract][Full Text] [Related]
4. Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses. Gagnon YL; Kröger RH; Söderberg B Vision Res; 2010 Apr; 50(9):850-3. PubMed ID: 20219517 [TBL] [Abstract][Full Text] [Related]
9. Chromatic aberration of the fish eye and its effect on refractive state. Sivak JG; Bobier WR Vision Res; 1978; 18(4):453-5. PubMed ID: 664325 [No Abstract] [Full Text] [Related]
10. Visual optics: the shapes of pupils. Land MF Curr Biol; 2006 Mar; 16(5):R167-8. PubMed ID: 16527734 [No Abstract] [Full Text] [Related]
11. Growth of the visual system in the African cichlid fish, Haplochromis burtoni. Optics. Fernald RD; Wright SE Vision Res; 1985; 25(2):155-61. PubMed ID: 4013083 [TBL] [Abstract][Full Text] [Related]
12. Chromatic dispersion of the ocular media. Sivak JG; Mandelman T Vision Res; 1982; 22(8):997-1003. PubMed ID: 6982563 [TBL] [Abstract][Full Text] [Related]
13. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans. Kröger RH; Gislén A Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679 [TBL] [Abstract][Full Text] [Related]
14. Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light? Siebeck UE; Marshall NJ Vision Res; 2001 Jan; 41(2):133-49. PubMed ID: 11163849 [TBL] [Abstract][Full Text] [Related]
15. Refractive index within the lens of a goldfish eye determined from the paths of thin laser beams. Axelrod D; Lerner D; Sands PJ Vision Res; 1988; 28(1):57-65. PubMed ID: 3413999 [TBL] [Abstract][Full Text] [Related]
16. The photopic spectral sensitivity of a dichromatic teleost fish (Perca fluviatilis). Cameron NE Vision Res; 1982; 22(11):1341-8. PubMed ID: 7157671 [TBL] [Abstract][Full Text] [Related]
17. [Lens caused shifts in color co-ordinates measured on the ocular fundus (author's transl)]. Weder W Klin Monbl Augenheilkd; 1978 Jan; 172(1):71-6. PubMed ID: 628185 [TBL] [Abstract][Full Text] [Related]
18. A complex system of ligaments and a muscle keep the crystalline lens in place in the eyes of bony fishes (teleosts). Khorramshahi O; Schartau JM; Kröger RH Vision Res; 2008 Jun; 48(13):1503-8. PubMed ID: 18471852 [TBL] [Abstract][Full Text] [Related]
19. Lens optical properties in the eyes of large marine predatory teleosts. Kröger RH; Fritsches KA; Warrant EJ J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Feb; 195(2):175-82. PubMed ID: 19048260 [TBL] [Abstract][Full Text] [Related]
20. [Diagnostic value of the chromatic contents of fundus photography]. Bek T Ugeskr Laeger; 2003 Jun; 165(25):2561-2. PubMed ID: 12854266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]